

Lecture Notes in Computer Science 3786
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jooseok Song Taekyoung Kwon
Moti Yung (Eds.)

Information Security
Applications

6th International Workshop, WISA 2005
Jeju Island, Korea, August 22-24, 2005
Revised Selected Papers

13

Volume Editors

Jooseok Song
Yonsei University
Department of Computer Science
134 Shinchon-Dong, Seodaemun-Gu, Seoul, 120-749, Korea
E-mail: jssong@emerald.yonsei.ac.kr

Taekyoung Kwon
Sejong University
Department of Computer Engineering
98 Gunja-Dong, Kwangjin-Gu, Seoul, 143-747, Korea
E-mail: tkwon@sejong.ac.kr

Moti Yung
RSA Laboratories
and
Computer Science Department, Columbia University
Room 464, S.W. Mudd Building, New York, NY 10027, USA
E-mail: moti@cs.columbia.edu

Library of Congress Control Number: 2006920030

CR Subject Classification (1998): E.3, D.4.6, F.2.1, C.2, J.1, C.3, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-31012-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31012-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11604938 06/3142 5 4 3 2 1 0

Preface

The 6th International Workshop on Information Security Applications (WISA
2005) was held on Jeju Island, Korea, during August 22–24, 2005. The workshop
was sponsored by the Korea Institute of Information Security and Cryptology
(KIISC), the Electronics and Telecommunications Research Institute (ETRI)
and the Ministry of Information and Communication (MIC).

The aim of the workshop is to serve as a forum for new conceptual and ex-
perimental research results in the area of information security applications, with
contributions from the academic community as well as from industry. The work-
shop program covers a wide range of security aspects including network security,
e-commerce, cryptography, cryptanalysis, applications and implementation as-
pects.

The Program Committee received 168 papers from 17 countries, and accepted
29 papers for a full presentation track and 16 papers for a short presentation
track. Each paper was carefully evaluated through a peer-review process by at
least three members of the Program Committee. This volume contains revised
versions of 29 papers accepted and presented in the full presentation track. Short
papers only appeared in the WISA 2005 pre-proceedings as preliminary versions,
and their extended versions may be published elsewhere.

In addition to the contributed papers, the workshop had five special talks.
Moti Yung gave a tutorial talk, entitled “Malware Meets Cryptography.” Virgil
Gligor and Michel Abdalla gave invited talks in the full presentation track, enti-
tled “On the Evolution of Adversary Models in Security Protocols” and “Public-
Key Encryption with Keyword Search,” respectively. Finally, Shozo Naito and
Jonguk Choi gave invited talks in the short presentation track, entitled “New
RSA-Type Public-Key Cryptosystem and Its Performance Evaluation” and “A
New Booming Era of DRM: Applications and Extending Business,” respectively.

Many people helped and worked hard to make WISA 2005 successful. We
would like to thank all the individuals involved in the Technical Program and in
organizing the workshop. We are very grateful to the Program Committee mem-
bers and the external referees for their time and efforts in reviewing the submis-
sions and selecting the accepted papers. We also express our special thanks to
the Organizing Committee members for making the workshop possible. Finally,
we would like to thank all the authors of the submitted papers and the invited
speakers for their contributions to the workshop.

December 2005 Jooseok Song
Taekyoung Kwon

Moti Yung

Organization

Advisory Committee

Man Young Rhee Kyung Hee Univ., Korea
Hideki Imai Tokyo Univ., Japan
Chu-Hwan Yim ETRI, Korea
Bart Preneel Katholieke Universiteit Leuven, Belgium

General Co-chairs

Dae Ho Kim KIISC, Korea
Sung Won Sohn ETRI, Korea

Steering Committee

Kil-Hyun Nam Korea National Defense Univ., Korea
Sang Jae Moon Kyungpook National Univ., Korea
Dong Ho Won Sungkyunkwan Univ., Korea
Sehun Kim KAIST, Korea
Pil-Joong Lee POSTECH, Korea
Kyo-Il Chung ETRI, Korea

Organization Committee

Chair: Im-Yeong Lee Soonchunhyang Univ., Korea
Finance: Dong-Il Seo ETRI, Korea
Publication: Ji Young Lim Korean Bible Univ., Korea
Publicity: Yoo-Jae Won KISA, Korea
Registration: Hyun-Gon Kim Mokpo National Univ., Korea
Treasurer: Hyung Woo Lee Hanshin Univ., Korea
Local Arrangements: Ki-Wook Sohn NSRI, Korea

Khi Jung Ahn Cheju National Univ., Korea

Program Committee

Co-chairs: Taekyoung Kwon Sejong Univ., Korea
Jooseok Song Yonsei Univ., Korea
Moti Yung Columbia Univ., USA

Members: Michel Abdalla École Normale Superieure, France
Dan Bailey RSA Laboratories, USA

VIII

Feng Bao Institute for Infocomm Research,
Singapore

Colin Boyd Queen’s Univ. of Technology,
Australia

Emmanuel Bresson CELAR Technology Center, France
Liqun Chen Hewlett-Packard, UK
Jung-Hee Cheon Seoul National Univ., Korea
Kyo-Il Chung ETRI, Korea
Mathieu Ciet Gemplus, France
Bruno Crispo Vrije Universiteit, Netherlands
Paulo D’Arco Univ. of Salerno, Italy
Shlomi Dolev Ben-Gurion University, Israel
Seungjoo Kim Sungkyunkwan Univ., Korea
Yongdae Kim Univ. of Minnesota at Twin Cities,

USA
Chi Sung Laih National Cheng Kung Univ.,

Taiwan
Moses Liskov The College of William and Mary,

USA
Kwok-Yan Lam Tsinghua Univ., China
Dong Hoon Lee CIST, Korea
Chae Hoon Lim Sejong Univ., Korea
Javier Lopez Malaga, Spain
Kanta Matsuura Tokyo Univ., Japan
Atsuko Miyaji JAIST, Japan
Fabian Monrose Johns Hopkins University, USA
Gregory Neven K.U. Leuven, Belgium
Daehun Nyang Inha Univ., Korea
Sang-Woo Park NSRI, Korea
Atul Prakash Univ. of Michigan, USA
Jaechul Ryu Chungnam National Univ., Korea
Kouichi Sakurai Kyushu Univ., Japan
Stuart Schechter Havard Univ., USA
Hovav Shacham Stanford University, USA
Yannis C. Stamatiou University of Ioannina, Greece
Willy Susilo Univ. of Wollongong, Australia
William Whyte NTRU System, USA
Yoo-Jae Won KISA, Korea
Shouhuai Xu Univ. of Texas, USA
Bulent Yener Rensselaer Polytechnic Institute,

USA
Kee Young Yoo Kyungpook National University,

Korea
Adam Young MITRE, USA
Jianying Zhou Institute for Infocomm Research,

Singapore

Table of Contents

Security Analysis and Attacks

Security Weakness in Ren et al.’s Group Key Agreement Scheme Built
on Secure Two-Party Protocols

Junghyun Nam, Seungjoo Kim, Dongho Won . 1

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes
Je Hong Park, Bo Gyeong Kang, Sangwoo Park 10

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis
Sourav Mukhopadhyay, Palash Sarkar . 25

System Security

An Alert Data Mining Framework for Network-Based Intrusion
Detection System

Moon Sun Shin, Kyeong Ja Jeong . 38

Key Factors Influencing Worm Infection in Enterprise Networks
Urupoj Kanlayasiri, Surasak Sanguanpong . 54

Evaluation of the Unified Modeling Language for Security Requirements
Analysis

Marife G. Ontua, Susan Pancho-Festin . 68

Network Security

A Simple and Efficient Conference Scheme for Mobile Communications
Wen-Shenq Juang . 81

A Hash-Chain Based Authentication Scheme for Fast Handover in
Wireless Network

Kihun Hong, Souhwan Jung, S. Felix Wu . 96

Efficient Multicast Stream Authentication for the Fully Adversarial
Network Model

Christophe Tartary, Huaxiong Wang . 108

X Table of Contents

Elastic Security QoS Provisioning for Telematics Applications
Minsoo Lee, Sehyun Park, Ohyoung Song . 126

DRM/Software Security

An Improved Algorithm to Watermark Numeric Relational Data
Fei Guo, Jianmin Wang, Zhihao Zhang, Xiaojun Ye, Deyi Li 138

Video Fingerprinting System Using Wavelet and Error Correcting Code
Hyunho Kang, Brian Kurkoski, Youngran Park, Hyejoo Lee,
Sanguk Shin, Kazuhiko Yamaguchi, Kingo Kobayashi 150

Secure Asymmetric Watermark Detection Without Secret of Modified
Pixels

Mitsuo Okada, Hiroaki Kikuchi . 165

Kimchi: A Binary Rewriting Defense Against Format String Attacks
Jin Ho You, Seong Chae Seo, Young Dae Kim, Jun Yong Choi,
Sang Jun Lee, Byung Ki Kim . 179

Software Protection Through Dynamic Code Mutation
Matias Madou, Bertrand Anckaert, Patrick Moseley,
Saumya Debray, Bjorn De Sutter, Koen De Bosschere 194

Efficient HW Implementation

Efficient Hardware Implementation of Elliptic Curve Cryptography
over GF (pm)

Mun-Kyu Lee, Keon Tae Kim, Howon Kim, Dong Kyue Kim 207

Developing and Implementing IHPM on IXP 425 Network Processor
Platforms

Bo-Chao Cheng, Ching-Fu Huang, Wei-Chi Chang,
Cheng-Shong Wu . 218

Analysis on the Clockwise Transposition Routing for Dedicated
Factoring Devices

Tetsuya Izu, Noboru Kunihiro, Kazuo Ohta, Takeshi Shimoyama 232

mCrypton – A Lightweight Block Cipher for Security of Low-Cost
RFID Tags and Sensors

Chae Hoon Lim, Tymur Korkishko . 243

Table of Contents XI

Side-Channel Attacks

Practical Modifications of Leadbitter et al.’s Repeated-Bits
Side-Channel Analysis on (EC)DSA

Katsuyuki Takashima . 259

A DPA Countermeasure by Randomized Frobenius Decomposition
Tae-Jun Park, Mun-Kyu Lee, Dowon Hong, Kyoil Chung 271

DPA Attack on the Improved Ha-Moon Algorithm
Jong Hoon Shin, Dong Jin Park, Pil Joong Lee . 283

An Efficient Masking Scheme for AES Software Implementations
Elisabeth Oswald, Kai Schramm . 292

Privacy/Anonymity

Secure Multi-attribute Procurement Auction
Koutarou Suzuki, Makoto Yokoo . 306

Oblivious Conjunctive Keyword Search
Hyun Sook Rhee, Jin Wook Byun, Dong Hoon Lee, Jongin Lim 318

Efficient, Non-optimistic Secure Circuit Evaluation Based on the
ElGamal Encryption

Go Yamamoto, Koji Chida, Anderson C.A. Nascimento,
Koutarou Suzuki, Shigenori Uchiyama . 328

Efficient Implementation

New Concept of Authority Range for Flexible Management of Role
Hierarchy

Sejong Oh . 343

Role-Based Access Control Model for Ubiquitous Computing
Environment

Song-hwa Chae, Wonil Kim, Dong-kyoo Kim . 354

Designing Security Auditing Protocol with Web Browsers
Ho Jung Lee, Jung Hwan Song . 364

Author Index . 377

Security Weakness in Ren et al.’s Group Key
Agreement Scheme Built on Secure Two-Party

Protocols�

Junghyun Nam, Seungjoo Kim, and Dongho Won

School of Information and Communication Engineering,
Sungkyunkwan University, Republic of Korea

jhnam@dosan.skku.ac.kr, skim@ece.skku.ac.kr, dhwon@dosan.skku.ac.kr

Abstract. A group key agreement protocol is designed to allow a group
of parties communicating over an insecure, public network to agree on a
common secret key. Recently, in WISA’04, Ren et al. proposed an efficient
group key agreement scheme for dynamic groups, which can be built on
any of secure two-party key establishment protocols. In the present work
we study the main EGAKA-KE protocol of the scheme and point out
a critical security flaw in the protocol. We show that the security flaw
leads to a vulnerability to an active attack mounted by two colluding
adversaries.

Keywords: Group key agreement, key authentication, collusion attack.

1 Introduction

Key establishment protocols are a critical building block for securing electronic
communications over an untrusted, open network like the Internet. Even if it
is computationally infeasible to break the cryptographic algorithm used, the
whole system becomes vulnerable to all manner of attacks if the keys are not
securely established. However, the experience has shown that the design of key
establishment protocols that are secure against an active adversary is not an easy
task to do, especially in a multi-party setting. Indeed, there is a long history of
protocols for this domain being proposed and subsequently broken by some active
attacks (e.g., [11, 15, 4, 18, 14]). Therefore, key establishment protocols must be
subjected to the strictest scrutiny possible before they can be deployed into
today’s hostile networking environment.

The original idea of extending the two-party Diffie-Hellman scheme [8] to the
multi-party setting dates back to the classical paper of Ingemarsson et al. [10],
and is followed by many works [6, 2, 17, 12] offering various levels of complexity.
Recently, in WISA 2004, Ren et al. [16] proposed an efficient group key agreement
scheme for dynamic groups. Instead of building the scheme from the scratch, they

� This work was supported by the University IT Research Center Project funded by
the Korean Ministry of Information and Communication.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 J. Nam, S. Kim, and D. Won

construct it by utilizing an existing two-party key establishment protocol that is
secure against an active adversary. The scheme consists of two sub-protocols: the
key establishment protocol EGAKA-KE and the key update protocol EGAKA-
KU. The main EGAKA-KE protocol allows a set of group members to establish
a common secret key (called either group key or session key). The EGAKA-KU
protocol aims to efficiently handle dynamic membership changes in the group.
In this paper, we uncover a security flaw in the EGAKA-KE protocol and show
that the security flaw leads to a vulnerability to an active attack mounted by
two colluding adversaries.

2 Preliminaries

The EGAKA-KE protocol is based on a binary key tree structure [13], where
every node is either a leaf or a parent of two nodes. The root is located at level 0
and all leaves are at level d or d− 1, with d being the height of the key tree. Let
G = {M1, . . . , Mn} be a set of group members wishing to agree on a group key.
Group members are arranged at leaves of the tree; all interior nodes are logical
nodes hosting no group members. We denote by Nl,r the rth node from the left
at level l and by N̂l,r the sibling node of Nl,r. An illustrative example of the
considered key tree is given in Fig. 1.

1,3N 2,3N

1,2N

3,3N 4,3N

2,2N

5,3N 6,3N

3,2N 4,2N

1,1N 2,1N

1,0N

1M 2M3M

4M

5M 6M7M

1,2

1,2

B

K

2,2

2,2

B

K

3,2

3,2

B

K

4,2

4,2

B

K

1,1

1,1

B

K

2,1

2,1

B

K

1,0K

3l

2l

1l

0l

3d

Fig. 1. An illustration of the key tree structure for G = {M1, . . . , M7}

Each node Nl,r, where l �= d, in the key tree is associated with a key pair,
the secret key Kl,r and its corresponding blinded key Bl,r. Let Gl,r denote the
subgroup consisting of the members in the subtree Tl,r rooted at node Nl,r. Then,
the secret key Kl,r is shared only by the members in the subgroup Gl,r, meaning
that the root key K0,1 serves as the group key shared by all the members in G.
To simplify the protocol description, we introduce some new notations through
the following definitions.

Definition 1. For each proper subtree of the key tree, there is a designated
negotiator (DN) that is a group member at the leftmost leaf node of the subtree.

Security Weakness in Ren et al.’s Group Key Agreement Scheme 3

By definition of DN, a group member can be a DN for multiple subtrees (up to
d). For example, in Fig. 1, M2 is the DN for the three subtrees T3,5, T2,3 and
T1,2, while M4 is the DN only for the single-node subtree T2,4.

Definition 2. Let T̂l,r denote the sibling subtree of Tl,r, i.e., the subtree rooted
at N̂l,r. Let Ml,r and M̂l,r denote the DNs respectively for Tl,r and T̂l,r. Then,
we say that two DNs Ml,r and M̂l,r are partnered together, or equivalently, are
partners of each other.

As already mentioned, the EGAKA-KE protocol is built on an existing two-
party protocol which is used to establish pairwise keys between group members.
Each DN Ml,r is designated as the representative of the subgroup Gl,r, and is
responsible for negotiating a pairwise key kl,r with his partner M̂l,r, hence the
name of it.

3 A Review of the EGAKA-KE Protocol

In describing the protocol, we assume that group members have agreed on a two-
party authenticated key agreement protocol that provides both perfect forward
secrecy and known key security. One example of such a protocol is A-DH pre-
sented by Ateniese et al. [1]. We also assume that all members know the structure
of the tree and their position within the tree. This can be done by letting one
randomly chosen member generate these tree-related information and broadcast
it to the other members. Despite the seemingly systematic arrangement of mem-
bers in the example of Fig. 1, we note that there is no significance to the order of
members’ positions in the tree, but rather the members are placed in a random
way as described in Section 4.1 of the original paper [16]; what really matters is
that the tree should be “well-balanced” in the sense that the height of the two
subtrees of a node should differ by at most one.

We now describe the details of the EGAKA-KE protocol. The operation of
the protocol is broadly divided into two phases: phase one, pairwise key estab-
lishment; phase two, secret and blinded keys generation.

3.1 Phase One: Pairwise Key Establishment

During this phase, each pair of partnered DNs Ml,r and M̂l,r generates a pairwise
key by performing the underlying two-party key agreement protocol. Note that
there are n − 1 such pairs in the key tree for the group of n members. For
instance, in the tree of Fig. 1, there are 6 pairs of partnered DNs: (M1, M5),
(M3, M7), (M2, M6), (M1, M3), (M2, M4) and (M1, M2). Since all the n − 1
protocol executions can be run simultaneously, the number of communication
rounds required in the first phase is the same as that needed to complete the
underlying two-party protocol.

If instantiated with A-DH, this process can be made concrete as follows. Let
G = 〈α〉 be a cyclic group of prime order q which is a subgroup of Z∗

p for a prime

4 J. Nam, S. Kim, and D. Won

p such that p = kq + 1 for some small k ∈ N (e.g., k = 2). Let (xi, α
xi) be the

private/public key pair of Mi and let Pi be the set of all partners of Mi. Then,
for all Mi ∈ G and for all Mj ∈ Pi such that i < j, Mi and Mj perform the
following steps:

1. Mi chooses a random ri ∈ Z∗
q and sends αri to Mj .

2. Mj chooses a random rj ∈ Z∗
q and sends αrjf(αxixj) to Mi. Here, f is a

function mapping elements of G to elements of Zq. If p is a safe prime (i.e.,
p = 2q + 1), then a perfect mapping function would be f(x) = x if x ≤ q,
and f(x) = p− x if x > q.

3. Mi and Mj compute the same pairwise key αrirj .

These pairwise keys serve as key encryption keys used for securely exchanging
the blinded keys between DNs in the second phase. In the sequel, we rule out the
case n = 2 (i.e., d = 1) from consideration, since the group key for this special
case is the pairwise key itself established between the two members in the first
phase.

3.2 Phase Two: Secret and Blinded Keys Generation

Once group members have established a pairwise key with each of their partners,
the secret and blinded keys of nodes are computed in a bottom-up manner,
starting with the nodes at level d − 1 and proceeding towards the root at level
0. The blinded key of a node is always computed by applying a one-way hash
function h to the secret key of the node, i.e., Bl,r = h(Kl,r). Although there are
some exceptions, computing the secret key of a node requires the knowledge of
two blinded keys, one for each of its two child nodes. More precisely, every Kl,r

for l > d−1 (see below for the case l = d−1) is computed recursively as follows:

Kl,r = h(Bl+1,2r−1||Bl+1,2r).

In this manner, it requires d communication rounds for all the group members
to determine the secret key of the root, i.e., the common group key; at the end
of the ith round, the key pair of node Nl,r at level l = d − i becomes available
to all the members of the subgroup Gl,r. The details of each round are given
below, where we assume l = d− i for each l appearing in the description of the
ith round.

Round 1: Let l = d− 1.

1. For each leaf node Nl,r, the secret key Kl,r is just a random nonce chosen by
the member at that node. For each internal node Nl,r, Kl,r is the pairwise
key itself shared between two members corresponding to the left and right
children.

2. Each DN Ml,r computes Bl,r as Bl,r = h(Kl,r) and sends to his partner M̂l,r

{Bl,r‖Ml,r}kl,r
,

where {Bl,r‖Ml,r}kl,r
denotes the ciphertext of Bl,r‖Ml,r encrypted using

some secure symmetric cryptosystem under the pairwise key kl,r.

Security Weakness in Ren et al.’s Group Key Agreement Scheme 5

Round i (2 ≤ i ≤ d− 1, for d ≥ 3): Let l = d− i.

1. For each node Nl,r, consider the two partnered DNs Ml+1,2r−1 and Ml+1,2r

respectively for its left and right subtrees. We describe this step only for
Ml+1,2r−1; Ml+1,2r acts correspondingly. Ml+1,2r−1 recovers Bl+1,2r by de-
crypting the message received from Ml+1,2r, and sends

{Bl+1,2r‖Ml+1,2r−1}Kl+1,2r−1

to the rest of the subgroup Gl+1,2r−1. Since all members in Gl+1,2r−1 share
the secret key Kl+1,2r−1, they can recover Bl+1,2r, and thus can compute
Kl,r = h(Bl+1,2r−1||Bl+1,2r) and Bl,r = h(Kl,r).

2. After computing Kl,r and Bl,r, each DN Ml,r sends {Bl,r‖Ml,r}kl,r
to his

partner M̂l,r. Note that by definition of DN, one same member plays the role
of both Ml+1,2r−1 and Ml,r.

Round d:

1. M1,1 and M1,2 recover respectively B1,2 and B1,1 by decrypting the mes-
sage received from each other. M1,1 then sends {B1,2‖M1,1}K1,1 to the other
members of G1,1. Similarly, M1,2 sends {B1,1‖M1,2}K1,2 to the rest of G1,2.

2. Finally, the members in G1,1 (respectively, G1,2) recover B1,2 (respectively,
B1,1), and compute the group key as:

K0,1 = h(B1,1||B1,2).

Consider, for example, the member M2 in Fig. 1. At the end of the first phase,
M2 holds three pairwise keys k3,5 (= k3,6), k2,3 (= k2,4) and k1,2 (= k1,1) shared
with M6, M4 and M1, respectively. In round 1 of the second phase, M2 first
computes the secret and blinded keys of node N2,3 as K2,3 = k3,5 and B2,3 =
h(K2,3). M2 then, as the DN M2,3, sends {B2,3‖M2}k2,3 to M4 who plays the
role of the DN M2,4. In round 2, M2 obtains B2,4 by decrypting {B2,4‖M4}k2,4

received from M4 and sends {B2,4‖M2}K2,3 to M6, the rest of subgroup G2,3. M2
now computes the secret and blinded key pair of N1,2 as K1,2 = h(B2,3||B2,4)
and B1,2 = h(K1,2), and since he serves as M1,2, sends {B1,2‖M2}k1,2 to M1, the
DN M1,1. In round 3, M2 recovers B1,1 by decrypting {B1,1‖M1}k1,1 received
from M1 and sends {B1,1‖M2}K1,2 to M4 and M6, the other members of G1,2.
Finally, M2 computes his group key as: K0,1 = h(B1,1||B1,2).

4 Security Analysis

The basic security property for a key establishment protocol to achieve is implicit
key authentication, which is defined in the following context [1, 15].

Definition 3. Let G be a set of parties who wish to share a common secret key
by running a key establishment protocol KEP. Let Ki be the secret key computed
by Mi ∈ G as a result of protocol KEP. We say that KEP provides implicit key
authentication if each Mi ∈ G is assured that no party Mq /∈ G can learn the key
Ki unless helped by a dishonest Mj ∈ G.

6 J. Nam, S. Kim, and D. Won

In many real world applications, it is typical to assume that a party can estab-
lish several concurrent sessions with many different parties. Hence, the security
property has to be met even when multiple instances of the protocol are run
concurrently in the presence of active adversaries who may read, modify, insert,
delete, replay and delay messages at their choice [3, 7, 5, 4, 12]. A protocol achiev-
ing implicit key authentication is called an authenticated key establishment pro-
tocol, and is of fundamental importance in much of modern cryptography and
network security.

Unfortunately, the EGAKA-KE protocol fails to satisfy implicit key authen-
tication, unlike the claim that it is an authenticated key establishment protocol.
Our main observation is that only sender’s identity concatenated with a blinded
key is encrypted to be sent in the protocol. This oversight creates a vulnerability
to an active attack mounted by two colluding adversaries A1 and A2. In our
attack, the adversaries are legitimate users in the sense that they are able to set
up normal protocol sessions with other users. Consider a protocol session S′ to
be conducted by the members of group G′, where A1 and A2 are not invited to
participate (i.e., A1, A2 /∈ G′). Without loss of generality, we assume that M1
and M2 serve respectively as M1,1 and M1,2 in session S′. We also assume that
M1 and M2 accept the invitation by the adversaries to participate respectively
as M1,1 and M1,2 in a new concurrent session S (the set of participants of S is
denoted by G). That is, the attack involves the following two sessions running
concurrently:

Session S : G = {M1, M2, A1, A2},
Session S′ : G′ = {M1, M2, . . . , Mn}.

For now, to simplify matters, we assume that the size n of group G′ is small, say
16 or less.

Our attack leads to a serious consequence. At the end of the attack, every
member in G′ computes a group key as per protocol specification and thinks that
the session is finished successfully, when, in fact, the computed key is available
also to the adversaries A1 and A2. A bird’s-eye view of the collusion attack
is shown in Fig. 2 and a more detailed description is now given. Let MS

i and
MS′

i denote the instances of Mi participating in S and S′, respectively. The
adversaries’ strategy is to let the two sessions proceed as specified in the protocol
except for changing some message flows as follows:

1. In the first phase, the adversaries have MS
1 establish a pairwise key with

MS′
2 instead of MS

2 , and, similarly, have MS′
1 establish a pairwise key with

MS
2 instead of MS′

2 . A little thought will make it clear that no matter what
key agreement protocol is selected as the underlying two-party protocol, it
is always possible for an active adversary to do so without being detected.

2. In the second to last round (i.e., d−1th round) of each session’s second phase,
M1 (M1,1) and M2 (M1,2) will send to each other a ciphertext encrypted
under their pairwise key. But, the adversaries redirect these ciphertexts sent
in two sessions so that the ciphertext sent by MS

1 (respectively, MS
2 , MS′

1
and MS′

2) is delivered to MS′
2 (respectively, MS′

1 , MS
2 and MS

1).

Security Weakness in Ren et al.’s Group Key Agreement Scheme 7

1M

2M

1M

2M

1A

2A

'S S

1,1

1,2

1,1

1,2

Fig. 2. A high-level description of an attack on the EGAKA-KE protocol

M1 and M2 cannot notice any disturbance at all since all the decryptions
will be successful producing a correct sender’s identity. Hence, M1 and M2 will
proceed to finish the executions of the protocol. To be concrete, let K ′

l,r and B′
l,r

be, respectively, the secret key and the blinded key of node Nl,r of the key tree
for session S′. Then, in the last round of session S,

– MS
1 recovers B′

1,2 by decrypting the ciphertext received from MS′
2 and sends

{B′
1,2‖M1}K1,1 to the other members of G1,1.

– MS
2 obtains B′

1,1 by decrypting the ciphertext received from MS′
1 and sends

{B′
1,1‖M2}K1,2 to the rest of G1,2.

Similarly, in the last round of session S′,

– MS′
1 recovers B1,2 by decrypting the ciphertext received from MS

2 and sends
{B1,2‖M1}K′

1,1
to the other members of G′

1,1.

– MS′
2 obtains B1,1 by decrypting the ciphertext received from MS

1 and sends
{B1,1‖M2}K′

1,2
to the rest of G′

1,2.

Therefore, at the end of two sessions, the members in G1,1 and G′
1,2 will compute

their session key as
Kfake1 = h(B1,1||B′

1,2),

8 J. Nam, S. Kim, and D. Won

while the members in G′
1,1 and G1,2 will compute the session key as

Kfake2 = h(B′
1,1||B1,2).

Through the attack, the authentication mechanism of the protocol is completely
compromised. Indeed, the effect of our attack is much the same as that of a man-
in-the-middle attack. The members of group G′ believe that they have established
a secure session among them, while in fact they have shared the keys Kfake1 and
Kfake2 with the adversaries. As a result, the adversaries can not only access and
relay any confidential communications among the members of G′, but can also
send arbitrary messages for their own benefit impersonating any of the group
members to the others. Consequently, there seems to be little reason to expect
that the EGAKA-KE protocol provides implicit key authentication, as soon as
two concurrent executions of the protocol have the same members for DNs M1,1
and M1,2.

5 Discussion

The weakness of the EGAKA-KE protocol stems from the fact that only sender’s
identity concatenated with a blinded key is encrypted to be sent. This oversight
creates the vulnerability of the protocol and allows two colluding adversaries
to switch the ciphertexts between two concurrent sessions with a different set
of participants. This implies that we can improve, somewhat, the security of
the protocol by integrating all the identities of protocol participants into each
message being encrypted in the protocol. This modification alone, however, does
not seem to be enough to completely fix the security problem, particularly in
case the underlying encryption scheme is malleable [9].

It should be also noted that the adversaries’ cheating in second phases may
not be successful if, unlike our assumption, the size of group G′ is much larger
than that of G, and so the second phase of session S′ takes noticeably longer than
that of session S; in such a case, MS

1 and MS
2 would wait the maximum timeout

period to receive a ciphertext in the second to last round, and finally abort the
session when the timer expires. But, the assumption on G′’s size can be relaxed
somewhat since the adversaries can slow down the progression of session S, for
example by establishing, at a deliberately lazy pace, pairwise keys with MS

1 and
MS

2 in the first phase. Furthermore, this assumption may be even avoided in a
scenario in which there are (empirically) at least about 	n/8
 to 	n/4
 members
in group G.

6 Conclusion

In WISA’04, Ren et al. [16] proposed a group key agreement scheme which can
be built on any of secure two-party key establishment protocols. In this work
we have studied the main EGAKA-KE protocol of the scheme and uncovered a
critical security flaw in the protocol. The security flaw has led us to present an
active attack mounted by two colluding adversaries.

Security Weakness in Ren et al.’s Group Key Agreement Scheme 9

References

1. G. Ateniese, M. Steiner, and G. Tsudik, “New multiparty authentication services
and key agreement protocols,” IEEE Journal on Selected Areas in Communica-
tions, vol. 18, no. 4, pp. 628–639, 2000.

2. K. Becker and U. Wille, “Communication complexity of group key distribution,”
Proceedings of the 5th ACM Conference on Computer and Communications Secu-
rity (CCS 1998), pp. 1-6, 1998.

3. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” In Ad-
vances in Cryptology — Crypto 1993, Lecture Notes in Computer Science, vol. 773,
pp. 232–249, 1994.

4. C. Boyd and J.M.G. Nieto, “Round-optimal contributory conference key agree-
ment,” In PKC 2003, Lecture Notes in Computer Science, vol. 2567, pp. 161–174,
2003.

5. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater, “Provably authen-
ticated group Diffie-Hellman key exchange,” Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security (CCS 2001), pp. 255–264, 2001.

6. M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution
system,” In Advances in Cryptology — Eurocrypt 1994, Lecture Notes in Computer
Science, vol. 950, pp. 275–286, 1995.

7. R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and their use for
building secure channels,” In Advances in Cryptology — Eurocrypt 2001, Lecture
Notes in Computer Science, vol. 2045, pp. 453–474, 2001.

8. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

9. D. Dolev, C. Dwork, and M. Naor, “Nonmalleable cryptography,” SIAM Journal
on Computing, vol. 30, no. 2, pp. 391–437, 2000.

10. I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution system,”
IEEE Trans. on Information Theory, vol. 28, no. 5, pp. 714–720, 1982.

11. M. Just and S. Vaudenay, “Authenticated multi-party key agreement,” In Advances
in Cryptology — Asiacrypt 1996, LNCS 1163, pp. 36–49, 1996.

12. J. Katz and M. Yung, “Scalable protocols for authenticated group key exchange,”
In Advances in Cryptology — Crypto 2003, Lecture Notes in Computer Science,
vol. 2729, pp. 110–125, 2003.

13. Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,” ACM
Trans. on Information and System Security, vol. 7, no. 1, pp. 60–96, 2004.

14. J. Nam, S. Kim, and D. Won, “A weakness in the Bresson-Chevassut-Essiari-
Pointcheval’s group key agreement scheme for low-power mobile devices,” IEEE
Communications Letters, vol. 9, no. 5, pp. 429–431, 2005.

15. O. Pereira and J.-J. Quisquater, “A security analysis of the Cliques protocols
suites,” Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW 2001), pp. 73–81, 2001.

16. K. Ren, H. Lee, K. Kim, and T. Yoo, “Efficient authenticated key agreement pro-
tocol for dynamic groups,” In 5th International Workshop on Information Security
Applications (WISA 2004), Lecture Notes in Computer Science, vol. 3325, pp. 144–
159, 2004.

17. M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer groups,”
IEEE Trans. on Parallel and Distributed Systems, vol. 11, no. 8, pp. 769–780, 2000.

18. F. Zhang and X. Chen, “Attack on an ID-based authenticated group key agreement
scheme from PKC 2004,” Information Processing Letters, vol. 91, no. 4, pp. 191–
193, 2004.

Cryptanalysis of Some Group-Oriented
Proxy Signature Schemes

Je Hong Park1, Bo Gyeong Kang2, and Sangwoo Park1

1 National Security Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

{jhpark, psw}@etri.re.kr
2 Department of Mathematics, Korea Advanced Institute of Science and Technology,

373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
snubogus@kaist.ac.kr

Abstract. A proxy signature scheme allows an entity to delegate its
signing power to another entity. Since the notion of proxy signatures was
first introduced, many proxy signature schemes and various extensions
have been considered. As an example, the notion of threshold proxy sig-
nature or proxy multi-signature was introduced as a group-oriented vari-
ant. In this paper, we show that the threshold proxy signature scheme
proposed by Hsu and Wu, and the proxy multi-signature schemes in-
dependently proposed by Chen et al. and Hsu et al. are all insecure
against the malicious original singer(s). Our result provides a simple ex-
ample that the way to put the secret parts together should be carefully
considered.

1 Introduction

The concept of a proxy signature is that the signer, called the original signer, can
delegate his signing capability to a designated person, called the proxy signer to
sign messages on its behalf. More precisely, the original signer sends a specific
message with its signature to the proxy signer, who then uses this information
to construct a proxy signing key. With the proxy signing key that is constructed
by the proxy signer in cooperation with the original signer, the proxy signer can
generate proxy signatures by employing a specific standard signature scheme.
From a proxy signature, anyone can check both the original signer’s delegation
and the proxy signer’s digital signature.

There are two kinds of proxy signature schemes depending on whether the
original signer can generate the same proxy signatures as the proxy signers do.
The one is proxy-unprotected where the proxy signer generates proxy signatures
only with the proxy signing key given by the original signer. So the original signer
can also generate the same proxy signatures. The other is proxy-protected where
the proxy signer generates proxy signatures not only with the proxy signing key
given by the original signer but also with his own private key. Therefore, anyone
else, including the original signer, cannot generate the same proxy signatures.
This differentiation is important in practical applications, since it enables proxy

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 10–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 11

signature schemes to avoid potential disputes between the original signer and
proxy signer [11].

The notion of proxy signature was introduced by Mambo, Usuda and Okamoto
[8]. After that, many proxy signature schemes and various types of proxy sig-
nature schemes which combine other special signatures to add that speciality
in proxy signatures have been proposed [7, 14, 13, 1, 2, 4, 5, 6, 10]. Especially, it
is natural to use threshold signature or multi-signature schemes to extend the
notion of proxy signature to group-oriented applications.

The notion of threshold proxy signature was introduced by Zhang [14] and
Kim et al. [7], independently. In a (t, n) threshold proxy signature scheme, the
original signer can delegate his/her signing capability to a group of n proxy
signers such that t or more of them can generate proxy signatures cooperatively,
but t − 1 or less of them cannot do the same thing. Separately, the notion of
proxy multi-signature was introduced by Yi et al. [13]. In a proxy multi-signature
scheme, a designated proxy signer can sign messages in the name of a group
composed of original signers.

In this paper, we will show that group-oriented proxy signature schemes pro-
posed in [1, 2, 5, 6] are all insecure against the malicious original signer(s). For
the HW scheme [5] and the HWH scheme [6] which use the same self-certified
public keys, we show that they suffer from the cheat attack ; namely, a malicious
signer can cheat the CA (Certificate Authority) into extracting a proxy signing
key. For both schemes, a malicious original signer can cheat CA into extracting
a proxy signing key of a proxy signer. For the HWH scheme, furthermore, this
attack can be used by a malicious proxy signer to cheat CA into extracting a
proxy signing key without the permission of the original signer. Previously, Shao
[10] introduced this attack for the proxy signature scheme in [4] using the same
self-certified public keys. The reason why it can be applied is that CA does not
able to confirm the information a user sent in the Registration stage. Our contri-
bution is to show that this attack can be applied to the group-oriented schemes.
Independently, we show that the HWH scheme also suffers from the original
signer’s proxy signing key forgery attack under some restrictions. Furthermore,
the CCH-1 [1] and CCH-2 [2] are also vulnerable to one original signer’s and
all original signers’ proxy signing forgery attack, respectively. Forgery by the
original signer(s) means that some malicious original signers can generate valid
proxy signatures which look as if they are generated by a proxy signer [11]. For
this purpose, original signer(s) generally forges a proxy signing key and uses it
to make a signature forgery. Our attack may be variously interpreted accord-
ing to the circumstances. If a vulnerable scheme is proxy-unprotected, then the
multi-signature scheme is insecure because one original signer can forge a multi-
signature in the name of the group of original signers. Else if a vulnerable scheme
is claimed as proxy-protected, then it is wrong because a valid proxy signature
can be generated by the original signer besides the proxy signer. Although the
cheat attack for the HW and HWH schemes is caused by the flaw of the self-
certified public keys they used, the original signer’s proxy signing key forgery

12 J.H. Park, B.G. Kang, and S. Park

attack for the HWH, CCH-1 and CCH-2 schemes comes from the security flaw
of the proxy multi-signature itself.

The rest of this paper is organized as follows. The security analysis of the HW
scheme [5] is given in Section 2. In Section 3, the HWH scheme proposed by [6]
is analyzed. Then, we analyze the security of the CCH scheme [1, 2] in Section 4.
Finally, we conclude our paper in Section 5.

2 The HW Scheme and Its Security Analysis

The HW scheme is based on the notion of self-certified public keys [3], in which
each user’s public key is generated by CA satisfying computationally unforgeable
property and the corresponding private key is computed by the user. So no
certificate is required for verifying the authenticity. Instead, the authenticity of
public keys is implicitly verified with the subsequent cryptographic applications
such as signature verification. To realize this notion, the HW scheme uses the
self-certified public keys proposed in [4]. This scheme consists of four stages:
Registration, Proxy secret share generation, Proxy signature generation and Proxy
signature verification.

Let p, q be two large primes, where q|(p − 1) and g be a generator of a
subgroup of order q in F∗

p, and let h be a hash function. The parameters (p, q, g)
and the function h are made public. The symbol IDi

1 is defined as the identity
(or identifier) associated with the user Ui. The private and public keys for CA
are denoted as γ and β, respectively, where γ ∈ Z∗

q and β = gγ mod p.

Registration: Each user Ui associated with the identifier IDi randomly chooses
an integer ti ∈ Z∗

q , computes

vi = gh(ti‖IDi) mod p

and then sends (vi, IDi) to CA. After receiving (vi, IDi) from Ui, CA chooses
zi ∈ Z∗

q , computes

yi = vih(IDi)−1gzi mod p, ei = zi + h(yi‖IDi)γ mod q, (1)

and returns (yi, ei) to Ui. Then, Ui computes

xi = ei + h(ti‖IDi) mod q

and verifies its validity by checking that

βh(yi‖IDi)h(IDi)yi = gxi mod p. (2)

If it holds, then Ui accepts (xi, yi) as it own private/public key pair.

1 In [5], ID is regarded as an element of Z∗
q .

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 13

Proxy secret share generation: Let Uo be the original signer with key pair (xo, yo),
G = {U1, . . . , Un} be a group of n proxy signers, and let PID be the set of
all identities associated with the members in G. The original signer Uo can
delegate his signing power to the group G in such a way that at least t proxy
signers can sign messages on behalf of Uo and G. For delegating the signing
power, Uo performs the following steps:

Step 1: Randomly chooses an integer k ∈ Z∗
q , and computes

K = gk

(
β

n
i=1 h(yi‖IDi)

n∏
i=1

(
h(IDi)yi

))−1

mod p,

σ = h(mw‖K‖PID)xo + k mod q,

where mw is the warrant consisting of the original and the proxy signers’
identifiers, the delegation duration, the threshold value t and etc.

Step 2: Determines a (t − 1)-th degree polynomial f(x) with coefficients
ai ∈ Z∗

q and computes Ai’s (for i = 1, 2, . . . , t− 1), where

f(x) = σ + a1x + a2x
2 + · · ·at−1x

t−1 mod q, and Ai = gai mod p.

Step 3: Sends the proxy secret share σi = f(IDi) to each proxy signer
Ui ∈ G via a secure channel.

Upon receiving σi from Uo, each Ui ∈ G checks its validity by the following
equation:

gσi =
(
βh(yo‖IDo)h(IDo)yo

)h(mw‖K‖PID)
Kβ

n
j=1 h(yj‖IDj)

n∏
j=1

(
h(IDj)yj

)
×

t−1∏
j=1

A
IDj

i

j mod p.

If it holds, then the proxy secret share σi is verified.

Proxy signature generation: Given a message m, any t or more proxy signers in G
can generate a valid proxy signature on behalf of Uo in this stage. Without loss
of generality, let D = {U1, U2, . . . , Ut} be the group of actual proxy signers
and let ASID be the collection of identities of all members in D. All members
in D cooperatively signs m on behalf of Uo by performing the following steps.

Step 1: Each Ui ∈ D chooses a random integers ki ∈ Z∗
q and then broadcasts

ri = gki mod p.
Step 2: Upon obtaining all rj ’s (j = 1, 2, . . . , t and j �= i), each Ui ∈ D

computes

R = (m‖h(m))
t∏

i=1

rri

i mod p,

si = kiri + Liσih(PID‖R‖K) + xih(ASID‖R‖K) mod q,

14 J.H. Park, B.G. Kang, and S. Park

where Li =
∏t

j=1,i�=j −IDj(IDi − IDj)−1 mod q. And then sends to the
designated clerk.

Step 3: Upon receiving si, the designated clerk validates it by checking

gsi = rri
i βh(yi‖IDi)h(IDi)yi

h(ASID‖R‖K)

βh(yo‖IDo)h(IDo)yo

h(mw‖K‖PID)
Kβ

n
i=1 h(yi‖IDj)

n

j=1

h(IDj)yj

×
t−1

j=1

A
IDj

i
j

Lih(PID‖R‖K)

mod p.

If it holds, then (ri, si) is the valid individual proxy signature of m with
respect to Ui. If all received (ri, si)’s (i = 1, . . . , t) are verified, then the
clerk computes

S =
t∑

i=1

si mod q

and announces the proxy signature (PID,ASID, K, mw, (R, S)) for the
message m.

Proxy signature verification: On receiving (PID,ASID, K, mw, (R, S)) as the proxy
signature, the verifier recovers m‖h(m) from the following equality:

m‖h(m) = Rg−S

(
β

t
i=1 h(yi‖IDi)

t∏
i=1

(
h(IDi)yi

))h(ASID‖R‖K)

((
βh(yo‖IDo)h(IDo)yo

)h(mw‖K‖PID)
Kβ

n
i=1 h(yi‖IDi)

×
n∏

i=1

(
h(IDi)yi

))h(PID‖R‖K)

mod p.

(3)

The proxy signature (PID,ASID, K, mw, (R, S)) for m is valid if the hash
value of m and the recovered h(m) is identical.

Now we discuss the security of this scheme. Suppose that a malicious origi-
nal signer Uo with identity IDo wants to compute a threshold proxy signature
without the agreement of the proxy group G = {U1, . . . , Un}. Let PID be the
set of all identities associated with the members in G, and let ASID be the set
of all identities associated with the actual signers {U1, . . . , Ut} in G whom Uo

wants to be involved in the forged signature. For each 1 ≤ i ≤ n, let Ui have
private/public key pair (xi, yi) satisfying Eq. (2). For an important special mes-
sage m, Uo randomly chooses integers k ∈ Z∗

q and ki ∈ Z∗
q for each i = 1, 2, . . . , t,

then computes

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 15

ri = gki mod p, K = gk

(
β

n
i=1 h(yi‖IDi)

n∏
i=1

(
h(IDi)yi

))−1

mod p,

R = m||h(m)
t∏

i=1

rri

i mod p,

and sets
α =

h(ASID‖R‖K)
h(mw‖K‖PID)h(PID‖R‖K)

.

To obtain the forged signature looked as being signed by the proxy signers
associated with ASID, Uo cheats CA during the Registration stage. It is possible
because CA does not confirm the information the user sent to receive a public
key. First, Uo randomly chooses an integer t ∈ Z∗

q , computes

v = gh(t‖IDo)
(

β
t
i=1 h(yi‖IDi)

t∏
i=1

(
h(IDi)yi

))−α

mod p

and sends (v, IDo) to CA. Then CA chooses z ∈ Z∗
q , computes

yo = vh(IDo)−1gz mod p, e = z + h(yo‖IDo)γ mod q

as Eq. (1) and returns (yo, e) to Uo. If

βh(yo‖IDo)h(IDo)yo

(
β

t
i=1 h(yi‖IDi)

t∏
i=1

(
h(IDi)yi

))α

= ge+h(t‖IDo) mod p

holds, then Uo accepts (xo, yo) as its own private/public key pair where xo =
e + h(t‖IDo) mod q. Now, Uo computes

S′ =
(t∑

i=1

kiri

)
+ xoh(mw‖K‖PID)h(PID‖R‖K) + kh(PID‖R‖K) mod q,

and announces the proxy signature (PID,ASID, mw, K, (R, S′)) for the message
m. It can be easily checked that this forged signature satisfies Eq. (3). Hence,
(PID,ASID, mw, K, (R, S′)) is a valid threshold proxy signature which looks like
being signed by the malicious signer Uo and the proxy signers associated with
ASID together. As a result, the malicious original signer Uo always can generate
a valid threshold proxy signature for a message m.

Remark 1. Recently, we found that the threshold proxy signature scheme pro-
posed by Xue and Cao [12] was also based on the same self-certified public keys.
By the similar method for the HW scheme, we can show that it is vulnerable to
the cheat attack by the original signer. We give a detailed account of the attack
in the full version of this paper [9].

In the next section, we show that the HWH proxy multi-signature scheme is
also insecure against the cheat attack. Although these signatures have a different
type, the same attack can be applied due to the weakness of the self-certified
public keys they used.

16 J.H. Park, B.G. Kang, and S. Park

3 The HWH Scheme and Its Security

In [6], the authors proposed two schemes: one is proxy-unprotected and the
other is proxy-protected. Even though the following attack is possibly applied to
the proxy-unprotected scheme, for brevity, we only consider the proxy-protected
one. This scheme consists of four stages: Registration, Proxy signing key generation,
Proxy signature generation and Proxy signature verification. Although there is no
notification in [6], this scheme uses the same self-certified public keys with the
HW scheme and so the same system parameters. Detail descriptions of the four
stages except Registration are stated as follows.

Registration: As in the Registration stage of the HW scheme, each user U with
the identity IDU obtains its own private/public key pair (xU , yU) according
to the procedures in this stage.

Proxy signing key generation: Let A1, . . . , An with the key pair (xi, yi) be the n
original signers who jointly delegate their signing power to the proxy signer
B. Each original signer Ai randomly chooses an integer ki ∈ Z∗

q , computes
Ki = gki mod p, and broadcasts Ki to other original signers. Upon getting all
Kj’s from Aj (1 ≤ j ≤ n and j �= i), Ai computes K =

∏n
i=1 Ki mod p and

σi = h(mw‖K)xi + ki mod q. Using a secure channel, Ai sends (mw, (Ki, σi))
to B who then verifies the validity by checking that

gσi =
(
βh(yi‖IDi)h(IDi)yi

)h(mw‖K)
Ki mod p.

If all (mw, (Ki, σi))’s are valid, B computes K =
∏n

i=1 Ki mod p and its own
proxy signing key as

σ = xB +
n∑

i=1

σi mod q.

Proxy signature generation and verification: For signing m on behalf of the orig-
inal signers {A1, . . . , An}, B uses σ to generate a valid proxy signature
(K, mw, Sigσ(m)), where Sigσ(m) denotes the ordinary signature operation
with the signing key σ on message m as used in [6]. For verifying the signa-
ture, verifiers first compute the public value for the original signers and the
proxy signer as

y′ = βh(yB‖IDB)h(IDB)yBK

(
β

n
i=1 h(yi‖IDi)

n∏
i=1

(
h(IDi)yi

))h(mw‖K)

mod p,

(4)
then verify the signature following the operation corresponding to the gener-
ation of it. It works well because y′ stands for gσ.

Remark 2. There is a minor error in the computation of Eq. (4) in [6]. The
authors suggest computing the following y′′

y′′ =
(

βh(yB‖IDB)+ n
i=1 h(yi‖IDi)h(IDB)yB

n∏
i=1

(
h(IDi)yi

))h(mw‖K)

K mod p

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 17

as the public value for the original signers, even in the case of proxy-protected
scheme. However, to use

σ = xB +
n∑

i=1

σi = xB +
n∑

i=1

(h(mw‖K)xi + ki) mod q

as the proxy signing key, we should not raise βh(yB‖IDB)h(IDB)yB mod p to
h(mw‖K) powers.

Now, we discuss the security of this scheme. We will show that a malicious
proxy signer can forge the proxy signing key without the permission of the origi-
nal signers, and also that a malicious original signer is able to generate the proxy
signing key without the approval of the other original signers and a proxy signer
in such way to register its own public key faked.

Besides the above cheat attacks, this scheme enables the original signer to
generate valid proxy signatures regarded as being signed by a proxy signer when
there are only one original signer involved. It means that the HWH scheme is
used as a proxy signature scheme not as a proxy multi-signature scheme. This
restricted scheme is proxy-protected, so our attack implies that it has a security
flaw.

The Cheat Attack by a Malicious Proxy Signer. Suppose that a malicious
proxy signer B with identity IDB chooses the members of original signers, Ai for
i = 1, 2, . . . , n without whose permission B wants to extract a proxy signing
key. According to the Registration stage, Ai has private/public key pair (xi, yi)
satisfying Eq. (2).

In order to compute a proxy signing key in the name of Ai’s, B randomly
chooses integers ki ∈ Z∗

q for each i = 1, 2, . . . , n, computes

K =
n∏

i=1

gki mod p

and sets α = h(mw‖K) where mw is the forged warrant consisting of the original
signers’ identities and the proxy signer’s identity, the delegation duration, etc.
Then B chooses a random t ∈ Z∗

q , computes

v = gh(t‖IDB)
(

β
n
i=1 h(yi‖IDi)

n∏
i=1

yih(IDi)
)−α

mod p

and sends (v, IDB) to CA. With (v, IDB), CA chooses z ∈ Z∗
q , computes

y = vh(IDB)−1gz mod p, e = z + h(y‖IDB)γ mod q

as Eq. (1) and returns (y, e) to B. If

βh(y‖IDB)h(IDB)y
(

β
n
i=1 h(yi‖IDi)

n∏
i=1

h(IDi)yi

)α

= ge+h(y‖IDB) mod p

18 J.H. Park, B.G. Kang, and S. Park

holds, B accepts (x, y) as its own private/public key pair where x = e +
h(y‖IDB) mod q. Using chosen ki’s in advance, B computes a proxy signing key
σ′ as follows

σ′ = x +
n∑

i=1

ki mod q.

Then B uses σ′ to sign messages on behalf of Ai, i = 1, . . . , n if

gσ′
= βh(y‖IDB)h(IDB)yK

(
β

n
i=1 h(yi‖IDi)

n∏
i=1

(
h(IDi)yi

))h(mw‖K)

mod p (5)

satisfies. Then the public value y′ computed in Eq. (4) is equal to gσ′
, the forged

proxy signing key σ′ has the same property as that of the proxy signing key
generated by the cooperation between the original signers and the proxy signer.

The Cheat Attack by a Malicious Original Signer. Suppose that a ma-
licious original signer A with identity IDA wants to compute a proxy signing
key without the permission of the original signers A1, · · · , An and the proxy
signer B. A cheats CA during the Registration stage. Let each Ai and B have
private/public key pairs (xi, yi) and (xB, yB) satisfying Eq. (2), respectively.

First, A randomly chooses an integer t ∈ Z∗
q , computes

v = gh(t‖IDA)
(

β
n
i=1 h(yi‖IDi)

n∏
i=1

(
h(IDi)yi

))−1

mod p

and sends (v, IDA) to CA. Then CA chooses z ∈ Z∗
q , computes

y = vh(IDA)−1gz mod p, e = z + h(y‖IDA)γ mod q

as Eq. (1) and returns (y, e) to A. If

βh(y‖IDA)+ n
i=1 h(yi‖IDi)h(IDA)y

n∏
i=1

(
h(IDi)yi

)
= ge+h(t‖IDA) mod p

holds, then A accepts (x, y) as its own private/public key pair and public key
where x = e + h(t‖IDA) mod q. Now, A randomly chooses integers k, ki ∈ Z∗

q

for each i = 1, 2, . . . , n, and computes

K = gk

(
βh(yB‖IDB)h(IDB)yB

)−1 n∏
i=1

gki mod p,

σ′ = h(mw‖K)x + k +
n∑

i=1

ki mod q,

where mw is the forged warrant consisting of the original signers’ identities and
the proxy signer’s identity, the delegation duration, etc. If

gσ′
= βh(y‖IDB)h(IDB)yBK(

βh(y‖IDA)+ n
i=1 h(yi‖IDi)h(IDA)y

n∏
i=1

(
h(IDi)yi

))h(mw‖K)

mod p
(6)

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 19

holds, A can use σ′ as a proxy signing key to sign messages on behalf of itself
and Ai, i = 1, . . . , n which can be verified as valid signatures generated by the
proxy signer B. Then the public value y′ computed in Eq. (4) is equal to gσ′

,
so A is enabled to generate valid proxy multi-signatures which are considered
as valid ones signed by itself, the other original signers and the proxy signer
together even without any approval of others.

The Original Signer’s Proxy Signing Key Forgery Attack. In the HWH
scheme, a proxy signing key is just summation of proxy sub key σi computed
by original signer Ai for each 1 ≤ i ≤ n and xB . We assume that only one
original signer is involved in the HWH scheme. Then we can see it as a proxy
signature scheme with one original signer. Let (xA, yA) and (xB , yB) be the
private/public key pairs of a malicious original signerA and a honest proxy signer
B, respectively. To attack this scheme, A chooses a random number k ∈ Zq, sets

K = gk
(
βh(yB‖IDB)h(IDB)yB

)−1
mod p

and computes the forged proxy signing key

σ = h(mw||K)xA + k mod q

which is valid since

σA + xB = h(mw||K)xA + k − xB + xB = σ.

So the HWH scheme with one original signer does not meet the proxy-protected
property.

This attack does not seem to be applied to the case that more than 2 original
signers join. Since this scheme requires the random factor K which is an input
element of hash function h to be

∏n
i=1 Ki where Ki is a random factor chosen

by Ai, one malicious user cannot omit h(mw||K)xi included in σi which can
be generated by only other honest user, just by modifying Ki. In addition, our
attack is not applicable to the similar proxy signature scheme in [4] due to
the difference of the equation for computing proxy signature key σ. In [4], σ is
computed by

σ = σA + h(mw‖K)xB mod q,

where σA = h(mw‖K)xA + k mod q is the original signer A’s signature for the
warrant mw. In this case, there is no way to remove the proxy signer’s private
key xB which is not known to A at all. However, note that this modification
does not help to resist the cheat attack.

4 The CCH Schemes and Its Security

In this section, we briefly recall proxy multi-signature schemes in [1, 2], and show
that these schemes are all insecure against the proxy signing key forgery attack
induced by either one or all of original signers.

20 J.H. Park, B.G. Kang, and S. Park

This scheme is based on conventional PKI setting, so all schemes has three
stages - Proxy signing key generation, Proxy signature generation and Proxy sig-
nature verification. Basically, they have the same system initialization that all
original signers select the common elliptic curve domain parameters. Let q be a
power of prime p and E be an ordinary elliptic curve over Fq and let h be a hash
function. Assume that the order of E must be divisible by a large prime r. Then
there is a base point P = (xP , yP) which generates the largest cyclic subgroup
of E(Fq).

For each 1 ≤ i ≤ n, the original signer Ai secretly selects a random number
di ∈ Z∗

r as its own private key, and computes the corresponding public key
Qi = diP = (xQi , yQi). The proxy signer also selects a random number dB ∈ Z∗

r

as its own private key, and then computes QB = dBP = (xQB , yQB). Each public
key Qi (1 ≤ i ≤ n) and QB must be certificated by CA.

4.1 The CCH-1 Scheme and Its Security

In [1], the authors proposed two proxy multi-signature schemes: one is proxy-
unprotected and the other is proxy-protected. The latter is based on the former
by adding the usage of a warrant mw. Due to the space limitation, we only
consider the proxy-protected scheme, denoted by the CCH-1 scheme. Clearly, our
attack is also applied to the proxy-unprotected scheme with small modifications.

Proxy signing key generation: For delegating the signing power, each Ai performs
the following steps:

Step A-1: Selects a random number ki ∈ Z∗
r , and computes

Ri = kiP = (xRi , yRi) and si = dixQih(mw, Ri)− ki mod r.

Step A-2: Sends σi = (mw, (Ri, si)) to the proxy signer via a secure channel.

Upon receiving σi from Ai for each 1 ≤ i ≤ n, the proxy signer B generates
a proxy signing key by the following steps:

Step B-1: Computes

Ui =
(
xQih(mw, Ri)

)
Qi − siP = (xUi , yUi)

and checks xUi = xRi mod r.
Step B-2: If all σi is valid, then computes the proxy signing key as follows:

d = dBxQB +
n∑

i=1

si mod r.

Proxy signature generation and verification: When B signs a message m on behalf
of the original signers {A1, . . . , An}, B executes one ECDLP-based ordinary
signing algorithm with the proxy signing key d as used in [1]. Assuming that
the resulting signature is Sigd(m), then the proxy signature affixed to the m for

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 21

the original signers is in the form of (m, R1, . . . , Rn, Sigd(m)). For verifying the
signature, the verifier first computes the proxy public value Q corresponding
to the proxy signing key d as

Q = xQB QB +
n∑

i=1

((
xQih(mw, Ri)

)
Qi −Ri

)
(= dP).

With this value, the verifier confirms the validity of Sigd(m) by validating the
verification equation of the designated signature scheme.

Now we discuss the security of the CCH-1 scheme. Without loss of generality,
we assume that A1 is a malicious original signer and that easily generates the
designated proxy warrant mw negotiated by A1, · · · , An. To achieve A1’s forgery,
A1 operates as follows. At first, A1 selects random numbers k1, · · · , kn ∈ Z∗

r , and
then computes

R1 = xQB QB + k1P +
n∑

i=2

(
xQih(mw, Ri)

)
Qi = (xR1 , yR1) (7)

where Ri = kiP = (xRi , yRi) for 2 ≤ i ≤ n. The forged proxy signing key d is
given by

d = d1xQ1h(mw, R1)−
n∑

i=1

ki.

From Eq. (7), the proxy public value Q computed by any verifier satisfies the
following equation:

Q = xQB QB +
n∑

i=1

(
xQih(mw, Ri)

)
Qi −

n∑
i=1

Ri

=
(
xQ1h(mw, R1)

)
Q1 +

(n∑
i=1

ki

)
P

=
(

d1xQ1h(mw, R1)−
n∑

i=1

ki

)
P = dP.

Hence any verifier can verify the validity of the proxy multi-signatures generated
by using d. As a result, the malicious original signer A1 can generate a proxy
signing key d without the participation of the original signers A2, · · · , An and
even the proxy signer B.

4.2 The CCH-2 Scheme and Its Security

In comparison with the CCH-1 scheme, the scheme proposed in [2], denoted by
the CCH-2 scheme has one more step in the Proxy signing key generation stage.
In the CCH-1 scheme, each original signer sends information to the proxy signer
on an individual basis. But the CCH-2 scheme requests that each original signer
computes a value holding in common at first, and then generates information
using it.

22 J.H. Park, B.G. Kang, and S. Park

Proxy signing key generation: For delegating signing power, each Ai performs the
following steps:

Step A-1: Selects a random number ki ∈ Z∗
r , and computes Ri = kiP =

(xRi , yRi).
Step A-2: If xRi = 0, then returns Step A-1; otherwise, broadcasts Ri to the

other original signers.
Step A-3: Upon receiving Rj (1 ≤ j ≤ n, i �= j), computes R =

∑n
i=1 Ri =

(xR, yR).
Step A-4: Computes si = dih(mw, xQi , xQB , xR)− ki mod r.
Step A-5: Sends σi = (mw, si) to the proxy signer via a public channel.

Upon receiving σi from Ai for each 1 ≤ i ≤ n, the proxy signer B generates
a proxy signing key by the following steps:

Step B-1: Computes R′
i = (xR′

i
, yR′

i
) as follows:

R′
i = h(mw, xQi , xQB , xR)Qi − siP,

and checks xR′
i
= xRi mod r.

Step B-2: If all σi is valid, then computes the proxy signing key as follows:

d = dB +
n∑

i=1

si mod r.

Proxy signature generation and verification: The proxy multi-signature affixed
to the m is in the form of (m, mw, R, Sigd(m)), where Sigd(m) means the
signature generated by a designated scheme using the proxy signing key d.
For verifying the signature, the verifier computes the proxy public value Q
corresponding to the proxy signing key d as

Q = QB +
n∑

i=1

h(mw, xQi , xQB , xR)Qi −R.

With this value, the verifier confirms the validity of Sigd(m) by validating
the verification equation of the designated signature scheme.

Now we discuss the security of the CCH-2 scheme. As similar to the case of
the CCH-1 scheme, our attack shows that this scheme is not proxy-protected.
Different from above attacks, however, this attack is occurred by conspiracy of
the original signers A1, . . . , An to generate valid proxy multi-signatures without
agreement of the proxy signer B.

The original signer Ai selects random numbers ki ∈ Z∗
r and then computes

Ri = kiP for 1 ≤ i ≤ n. Furthermore, A1 adds QB to R1. Next, computes

R =
n∑

i=1

Ri = QB +
(n∑

i=1

ki

)
P. (8)

Cryptanalysis of Some Group-Oriented Proxy Signature Schemes 23

The forged proxy signing key generated by the original signers A1, . . . , An is as
follows:

d =
n∑

i=1

(
dih(mw, xQi , xQB , xR)− ki

)
.

From Eq. (8), the proxy public value Q computed by any verifier satisfies the
following equation:

Q = QB +
n∑

i=1

h(mw, xQi , xQB , xR)Qi −R

= QB +
(n∑

i=1

dih(mw, xQi , xQB , xR)
)

P −
(n∑

i=1

ki

)
P −QB

=
(n∑

i=1

dih(mw, xQi , xQB , xR)
)

P −
(n∑

i=1

ki

)
P

=
(n∑

i=1

(
dih(mw, xQi , xQB , xR)− ki

))
P = dP.

This means that the verifier will be convinced that any proxy multi-signatures
signed by using the forged signing key d are generated by agreement of A1, . . . , An

and B. Hence this scheme does not provide proxy-protected property as claimed
in [2].

5 Conclusion

In this paper, we have presented a security analysis of some group-oriented proxy
signature schemes proposed in [1, 2, 5, 6], and showed that all these schemes are
insecure. For the HW scheme [5] and the HWH scheme [6], we showed that they
suffer from the cheat attack caused by the flaw of the self-certified public keys
they used. Additionally, the HWH scheme with one original signer and CCH-1
and 2 schemes are vulnerable to the proxy signing forgery attack by one or all
of original signers.

Acknowledgement

The authors of this paper would like to thank anonymous referees for valuable
comments. The second author was supported by the Korea Research Foundation
Grant (KRF-2004-M07-2004-000-10054-0).

References

1. T.-S. Chen, Y.-F. Chung and G.-S. Huang. Efficient proxy multi-signature schemes
based on the elliptic curve cryptosystem. Comput. Secur., Vol. 22(6): 527–534
(2003).

24 J.H. Park, B.G. Kang, and S. Park

2. T.-S. Chen, Y.-F. Chung and G.-S. Huang. A traceable proxy multi-signature
scheme based on the elliptic curve cryptosystem. Appl. Math. Comput., Vol.
159(1):137–145 (2004).

3. M. Girault. Self-certified public keys. Advances in Cryptology - EUROCRYPT’91,
Lecture Notes in Comput. Sci. 547, Springer-Verlag, pp. 257–265, 1991.

4. C.-L. Hsu and T.-S. Wu. Efficient proxy signature schemes using self-certified public
keys. Appl. Math. Comput., Vol. 152(3): 807–820 (2004).

5. C.-L. Hsu and T.-S. Wu. Self-certified threshold proxy signature schemes with
message recovery, nonrepudiation, and traceability. Appl. Math. Comput., Vol.
164(1):201–225 (2005).

6. C.-L. Hsu, T.-S. Wu and W.-H. He. New proxy multi-signature scheme. Appl. Math.
Comput., Vol. 162(3):1201-1206 (2005).

7. S. Kim, S. Park and D. Won. Proxy signatures, revisited. Information and Com-
munications Security - ICICS’97, Lecture Notes in Comput. Sci. 1334, Springer-
Verlag, pp. 223–232, 1997.

8. M. Mambo, K. Usuda and E. Okamoto. Proxy signatures for delegating signing
operation. Proc. 3 rd ACM conference on Computer and Communications Security,
ACM press, pp. 48–57, 1996.

9. J.H. Park, B.G. Kang and S. Park. Cryptanalysis of some group-
oriented proxy signature schemes. Full version of this paper. Availabel at
http://crypt.kaist.ac.kr/jhpark/.

10. Z. Shao. Improvement of efficient proxy signature schemes using self-certified public
keys. Appl. Math. Comput., in press (2004).

11. G. Wang, F. Bao, J. Zhou and R.H. Deng. Security analysis of some proxy signa-
tures. Information Security and Cryptology - ICISC 2003, Lecture Notes in Com-
put. Sci. 2971, Springer-Verlag, pp. 305–319, 2004.

12. Q. Xue and Z. Cao. A threshold proxy signature scheme using self-certified public
keys. Parallel and Distributed Processing and Applications - ISPA 2004, Lecture
Notes in Comput. Sci. 3358, Springer-Verlag, pp. 715–724, 2004.

13. L. Yi, G. Bai and G. Xizo. Proxy multi-signature scheme: a new type of proxy
signature scheme. Electron. Lett., Vol. 36(6):527–528 (2000).

14. K. Zhang. Threshold proxy signature schemes. Information Security - ISW’97,
Lecture Notes in Comput. Sci. 1396, Springer-Verlag, pp. 282–290, 1997.

Application of LFSRs in Time/Memory
Trade-Off Cryptanalysis

Sourav Mukhopadhyay and Palash Sarkar

Cryptology Research Group,
Applied Statistics Unit,

Indian Statistical Institute,
203, B.T. Road, Kolkata 700108, India
{sourav t, palash}@isical.ac.in

Abstract. Time/memory trade-off (TMTO) attacks require the
generation of a sequence of functions which are obtained as minor mod-
ifications of a one-way function to be inverted. We carefully examine
the requirements for such function generation. A counter based method
is used to generate the functions for the rainbow method. We show that
there are functions for which the counter method fails. This is similar to
the example given by Fiat and Naor for the Hellman TMTO. Our main
contribution is to suggest the use of LFSR sequences for function gener-
ation to be used in the rainbow TMTO. Properties of LFSR sequences
such as long period, pseudorandomness properties and efficient forward
and backward generation make such sequences useful for the intended
application. One specific advantage is that it is not possible to a priori
construct a Fiat-Naor type example for the LFSR based rainbow method.

Keywords: Time/memory trade-off, LFSR, rainbow table.

1 Introduction

In 1980, Hellman [5] described a time/memory trade-off (TMTO) attack for
block ciphers. This is a chosen plaintext attack. Let Ek() be the encryption
function of the block cipher. A fixed message msg is chosen and a one-way
function f is defined from keys to ciphertexts by f(k) = Ek(msg). Given a
ciphertext cpr, produced by encrypting msg using an unknown key k, i.e., f(k) =
cpr, the task of the cryptanalyst is to obtain k. This can be seen as inverting
a one-way function f and later work has viewed TMTO as a general one-way
function inverter. See [6, 2] for some recent applications and analysis.

In an offline phase, a set of tables is constructed. The tables store keys and
an encryption of msg under an unknown key is received in the online phase. The
goal is to find the unknown key by making use of these precomputed tables. The
main idea of Hellman was to store only a part of the tables. This incurs a cost in
the online phase and leads to a trade-off between the memory and online time
requirements.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 25–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 S. Mukhopadhyay and P. Sarkar

Suppose there are r tables to be used in the Hellman method. The ith table
requires the use of a function fi which is obtained from f by a minor modification
such as permuting the output bits of f . For the method to work, the tables have
to be assumed to be independent collection of random points. This requires the
assumption that the functions fi’s are pairwise independent random functions.

Oechslin [11], proposed rainbow tables that reduces the online runtime cost
to one-half of Hellman’s method. The idea is to replace the collection of “small”
tables by a (few) large table(s) and to use “rainbow chains” as rows of the table.
As in the case of the Hellman method, assume that f0, . . . , ft−1 are pairwise
independent random functions obtained by modifying the one-way function f
to be inverted. A rainbow chain is a sequence of points x0, . . . , xt, where x0 is
randomly chosen and for i ≥ 0, xi+1 = fi(xi).

A crucial point in both the above constructions is to obtain the different
functions fi such that they can be assumed to be pairwise independent. In fact,
Fiat and Naor [4] showed that there exists functions which are polynomial time
indistinguishable from a random function and for which Hellman attack fails
(if bit permutation is used to obtain the fi’s). They also proposed a method
which provably succeeds for all functions but the time and memory requirement
of their method is inferior to that of Hellman.

In case of rainbow tables, a counter based method is used to generate the rain-
bow chains. The function fi(x) is defined as f(x) ⊕ i. If several rainbow tables
are used, then the counter method is used in the following manner: if table one
uses index 1 to 1000 (say), then table two uses functions 1001 to 2000, and so on.

We carefully examine the different requirements for defining the functions fi.
We show that the counter method does not ensure uniform modification of the
output and an adaptation of Fiat-Naor [4] counterexample for Hellman method
also works for rainbow with counter method .

This leads us to the question of obtaining a method to define the fi’s such
that the output modification is uniform. Our main contribution is to show that
sequences produced by linear feedback shift registers (LFSRs) are a natural
choice for such an application. LFSR sequences are very efficient to generate in
the forward and backward directions; they satisfy certain nice pseudorandomness
properties; it is quite easy to generate very long non-repeating sequences of bit
vectors. All these properties make LFSR sequences very suitable for defining the
functions required in rainbow chains for one or more tables. One advantage of
using LFSRs is that it is not possible to a priori construct a Fiat-Naor type
example for the LFSR based rainbow method.

Details of an LFSR based multiple table rainbow method is presented and
analysed. It turns out that for the same pre-computation time, the success prob-
ability of multiple table rainbow method is higher than that of Hellman method
or the single table rainbow method. On the other hand, the runtime of the
multiple table method is slightly higher. We show that a Kim-Matsumoto style
parametrization is possible for the rainbow method and yield a higher success
probability than the single table rainbow method without changing the runtime
or the memory requirement.

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 27

2 Time/Memory Trade-Off Methodology

Let f : {0, 1}n → {0, 1}m be the one-way function to be inverted. As mentioned
in the Introduction, this function maybe obtained from a block cipher by con-
sidering the map from the keyspace to the cipherspace for a fixed message. In
general, the time/memory trade-off (TMTO) methodology attempts to invert
an arbitrary one-way function and we will follow this approach.

The value of m maybe less than, equal to, or greater than n. The last case
occurs in Hellman’s original TMTO where f is obtained from DES and maps
56-bit keys to 64-bit ciphertexts. The first case can occur in obtaining f from
AES, where 256-bit keys can be mapped to 128-bit ciphertexts. However, the
TMTO methodology requires f to be applied iteratively and for this we must
have m = n. The solution suggested by Hellman in [5] for the case m > n is to use
a so-called “reduction function”, which maps a 64-bit string to a 56-bit string.
Hellman further suggested that the reduction can be as simple as dropping the
first eight bits. A dual strategy for expansion can be used in the case where
m < n. Assuming these to have taken place, TMTO methodology considers the
domain and range of f to be the same and hence f can be iteratively applied.
We will follow this approach and in the rest of the paper we will assume f is a
map from f : {0, 1}n → {0, 1}n. Thus, our problem will be that given a string
y, we will have to find a string x such that f(x) = y. We will denote N = 2n.

In the following by (f ◦ g)(x) we will mean f(g(x)) and similarly for the
composition of more than two functions.

2.1 The Hellman Method

Hellman’s attack consists of two phases: precomputing the tables in an offline
phase and searching the tables in an online phase. In a precomputed table, chains
of length t are generated from a start point x0 as,

x0
f−→ x1

f−→ x2 → · · · → xt−2
f−→ xt−1

f−→ xt.

For an m× t table, m chains of length t are generated. The start points and the
end points of the table are stored, sorted in the increasing order of end points.
The intermediate points are not stored.

Using the birthday paradox [1], m and t have to satisfy mt2 = N . So one
table can cover only a fraction mt

N = 1
t of the N points. Hence, t different

(unrelated) tables are needed to cover all N keys. These are created as follows.
For the t tables, t different functions f1, . . . , ft are used, where each fi is a
simple output modification of the function f , i.e. fi(x) = ψi(f(x)), where ψi is
the ith output modification function. The total memory requirement is m × t
many start-point/end-point pairs.

In the online phase, given y, it is required to find x such that y = f(x). The t
tables are searched one after the other. The search for x in the ith is as follows.
We repeatedly apply fi to ψi(y) at most t times and after each application we
check whether the output of fi is in the set of end points of the ith table. The

28 S. Mukhopadhyay and P. Sarkar

number of table lookups for this is at most t. If the output is an end point, then
we come to the corresponding start point and repeatedly apply the function fi

until it reaches ψi(y). The previous value it visited is x. The total runtime for
searching in all the tables is = t2 + t ≈ t2 invocations of f and t2 table look-ups.

2.2 Rainbow Method

Rainbow table has been proposed by Oechslin [11] to reduce the runtime cost
to one-half of Hellman’s method. Rainbow chains are used in rainbow tables. To
construct a rainbow chain of size t we choose t functions f0, f1, . . . , ft−1, which
are again simple output modifications of f . Taking a start point x0, a rainbow
chain is generated as follows,

x0
f0−→ x1

f1−→ x2 → · · · → xt−1
ft−1−→ xt.

To construct a rainbow table of size mt× t, we randomly choose mt keys from
the key space and generate these many rainbow chains. The start and end points
of the table are again stored in the increasing order of end points. The memory
required is mt start-point/end-point pairs.

In the online phase, we will be given a y and we have to find an x such that
f(x) = y. Suppose the functions f0, . . . , ft−1 are used to define the rainbow
chains, where fi(x) = ψi(f(x)). For 0 ≤ j ≤ t−1, we apply ψj to y and compute
y0 = ft−1(ft−2(. . . (fj+1(ψj(y)) . . .). If y0 is in the last column of the table, then
let x0 be the corresponding start point. This gives us the equations:

y0 = ft−1(ft−2(. . . (fj+1(ψj(y)) . . .)
= ft−1(ft−2(. . . (f1(f0(x0)) . . .)
= ft−1(ft−2(. . . (fj+1(fj(x)) . . .)
= ft−1(ft−2(. . . (fj+1(ψj(f(x))) . . .)

⎫⎪⎪⎬⎪⎪⎭ (1)

where x = fj−1(fj−2(. . . (f1(f0(x0)) . . .). The first equality follows by the online
search condition and the second equality follows from the table construction.
From the first and last row of (1) we would like to infer that y = f(x), i.e.,
x is a pre-image of y. Note that this might not always hold, leading to a false
alarm. During the actual attack, this needs to be verified. The total runtime =
t(t−1)+2t

2 ≈ t2

2 invocations of f .
The same technique can be applied to multiple rainbow tables, even though

this is not explicitly mentioned in the paper [11] but appears in the implemen-
tation [13]. If r tables are used, then the runtime increases to rt2/2 and hence
for practical implementation, r will be a small constant.

2.3 Time/Memory Trade-Off Curve

The online runtime T and memory requirement M of the Hellman method satisfy
a so-called TMTO curve: TM2 = N2 and an important point on this curve is
M = T = N2/3 leading to m = t = N1/3. The asymptotic behaviour of the
rainbow method is same as that of the Hellman method and in an asymptotic

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 29

sense the TMTO curves are the same. This is perhaps the reason, why the TMTO
curve for the rainbow method is not explicitly given in [11]. For rainbow method,
M = N2/3 and T = N2/3/2.

2.4 Success Probability

The success probability for any TMTO method is the probability that the key
is present in the tables. The total size of all the tables is rmt, where r is the
number of tables and each table has m rows and t columns. (Note that only rm
pairs of keys are stored.) Thus, the repetition of the values in the tables reduces
the success probability of the method. If we set rmt = N , then the success
probability of both Hellman and rainbow method is known to be around 60%.
Thus, to increase the success probability, it has been advocated [7, 13] to take
rmt = λN for small λ. In fact, [7] has shown that it is possible to take λ > 1 in
the Hellman method to increase the success probability but without increasing
the online runtime or the memory.

3 Function Generation

In this section, we first consider the requirements on the functions fi’s. The
definition of fi has been suggested by Hellman to be fi(x) = ψi(f(x)). We will
call this to be the output modification approach. One can similarly consider
fi(x) = f(ψi(x)), or the input modification approach.

We first consider the case of input modification and argue that this is actually
the same as output modification. Consider the rainbow method and suppose
fi(x) is defined as fi(x) = f(ψi(x)). Consider the rainbow chain

(ft−1 ◦ ft−2 ◦ · · · ◦ f1 ◦ f0)(x0)

where x0 is a start point and xi = fi−1(xi−1) for i ≥ 1. Expanding the above
sequence, we can write

(f ◦ ψt−1 ◦ f ◦ ψt−2 ◦ · · · ◦ f ◦ ψ1 ◦ f ◦ ψ0)(x0).

Now, for 1 ≤ i ≤ t − 1, if we define gi(x) = ψi(f(x)), then we get the rainbow
chain x′

0, . . . , x
′
t−1, where x′

0 = ψ0(x0) and x′
i = gi(x′

i−1). This gives a rainbow
chain of output modified form of length one less than the original chain. Also,
note that x0 is chosen to be a random point and hence it does not matter whether
we start from x0 or from ψ0(x0). This shows that we can convert a chain of input
modified form into a chain of output modified form. A similar conversion will
also convert a chain of output modified form into a chain of input modified form.
Further, the technique also works for the original Hellman method.

The literature considers only output modification. To the best of our knowl-
edge, the above argument regarding input modification does not appear in the
literature. In view of this argument, like previous papers, we will consider only
output modification.

30 S. Mukhopadhyay and P. Sarkar

3.1 Invertibility

Consider the search technique of the rainbow method. From (1), we assume
fj(x) = ψj(y) and infer that f(x) = y. If ψj is invertible, then using fj(x) =
ψj(f(x)) = ψj(y), we have f(x) = y and x is a pre-image of y. If ψj is not
invertible, then the relation might not give a pre-image of y, leading to a false
alarm. The condition ψj being invertible ensures that there are no false alarms
due to the use of ψj . (Note that there may be false alarms due to f itself or
due to the modification to f to make the domain and range same.) A similar
argument shows that ψj ’s used in the Hellman method should also be invertible.

3.2 Efficient Function Generation

To apply the function fi we need to apply f and the function ψi. For this we need
a description of the function ψi. One approach is to store the description of all
the t functions ψ0, . . . , ψt−1. This requires an additional storage space of order t.
Since t = N1/3 in both Hellman and rainbow method, this storage amount can
be substantial. One way to avoid this storage is to generate the functions “on the
fly”. Thus, we need an efficient on the fly method to generate the functions ψi’s.

3.3 Long Period

Consider the on-the-fly method discussed above. This means that we should
actually be capable of generating a sequence of bit vectors and use these to
define the functions ψi’s. Since we do not want repetition of the functions, the
sequence must consist of distinct bit vectors. In other words, it must be possible
to generate a sequence of bit vectors with period long enough to ensure that all
the ψi’s are distinct.

3.4 Uniform Modification of Output

One simple way to achieve the above requirements is to use the so-called counter
method. In this section, we discuss this method and its problem.

For both Hellman and rainbow method to work, the functions fi’s need to
be pairwise unrelated. For the Hellman method, this requirement was carefully
examined by Fiat and Naor [4]. They show that there exists functions, which
are polynomial time indistinguishable from a truly random function and for
which the Hellman attack fails with overwhelming probability. The following
construction is given in [4]: consider a function f with the property that a certain
set of N1−δ domain points (δ < 1/3) map to the same image. One can design a
cryptographic scheme so that only N −N1−δ of the keys induce a permutation
and the other keys map all ciphertext values to zero. Hellman attack fails for
such an f .

Rainbow method uses a sequence f0, f1, . . . , ft−1 of functions. These are gener-
ated using a counter. We argue that the counter method also suffers from a prob-
lem similar to the one described by Fiat and Naor for the Hellman method. Given

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 31

a function f , rainbow method constructs the modification functions fi by defin-
ing fi(x) = f(x)⊕ i. Since i ≤ t, this modifies at most the log t least significant
bits of f(x). Now one can construct a function f as follows: f : {0, 1}n → {0, 1}n
with the property that for any x ∈ {0, 1}n, if Firstn1(x) = (0, 0, . . . , 0) (n1 bits)
then f(x) = (0, 0, . . . , 0) (n bits). Let S1 be the set of all n-bit vectors whose
most significant n1 bits are zero. Then the size of S1 is N1 = 2n−n1 . We choose
n − log t = n1 < n

3 . Considering such a function, we may construct a crypto-
graphic scheme so that N −N1 of the keys induce a permutation and other keys
map all ciphertext values to zero. For a rainbow chain

x0
f0−→ x1

f1−→ x2 → . . .→ xt−1
ft−1−→ xt,

if any xi is in S1, then xi+1, xi+2, . . . up to xN1 (if N1 ≤ t) are zeros. This will
generate a huge number of zeros inside a rainbow table, resulting in the failure
of rainbow method in this case.

For multiple rainbow tables, Oechslin [11, 12, 13] uses counter method to get
rainbow tables as follows: the second rainbow table use a different set of re-
duction functions, i.e., if table one uses index 1 to 1000 (say), then table two
uses functions 1001 to 2000. This method also suffers from the above mentioned
problem and we may get a huge number of zeros inside the tables.

3.5 Pseudorandomness

One way to avoid the above problem is to define fi(x) = f(x) ⊕ Xi, where
X0, X2, . . . , Xt−1 is a pseudo-random sequence of n-bit vectors. This ensures
that all output bits are uniformly modified unlike the counter method where
only some least significant bits are modified. Further, the pseudorandom se-
quence X0, X2, . . . , Xt−1 should be efficient to generate “on-the-fly”. The cost
of generating the next element of the sequence should be negligible compared to
the cost of one invocation of f .

Choices like fi(x) = f(x) ∗ i in GF (2n) or fi(x) = f(x) + f(i) can also
provide uniform modification of the output. However, these are quite expensive
operations, the first one involves a polynomial multiplication and the second one
involves an extra invocation of f . We would like to define fi such that the cost
of one invocation of fi is almost the same as that of f .

4 Introducing LFSRs as Function Generators

A linear feedback shift register (LFSR) [8, 9] of length l consists of l stages
0, 1, 2, . . . , l − 1, each capable of storing one bit. An l-bit LFSR is denoted by
(l, p(x)), where p(x) = 1 ⊕ c1x ⊕ · · · ⊕ cl−1x

l−1 ⊕ xl is called the connection
polynomial [9]. LFSRs can produce sequences having large periods. If the initial
content of stage i is ai ∈ {0, 1}, for 0 ≤ i ≤ l − 1, then (al−1, al−2, . . . , a0) is
called the initial internal state of the LFSR. Let at time t ≥ 0 the content of the
stage i be at

i ∈ {0, 1}, for 0 ≤ i ≤ l − 1, then the internal state of the LFSR at

32 S. Mukhopadhyay and P. Sarkar

time t is (at
l−1, a

t
l−2, . . . , a

t
0) . Let Xt=(at

l−1, . . . , a
t
1, a

t
0) for t ≥ 0, be a sequence

of l-bit vectors, with tth term as Xt. If p(x) is a primitive polynomial, then each
of the 2l − 1 non-zero initial states of the LFSR (l, p(x)) produces an output
sequence with maximum possible period 2l − 1.

Let us consider the kth and (k + 1)th terms of the sequence, i.e., Xk =
(ak

l−1, . . . , a
k
1 , ak

0) and Xk+1 = (ak+1
l−1 , . . . , ak+1

1 , ak+1
0) respectively where,

ak+1
l−1 = cl−1a

k
l−1 ⊕ cl−2a

k
l−2 ⊕ · · · ⊕ c1a

k
1 ⊕ ak

0 ;
ak+1

l−2 = ak
l−1; a

k+1
l−3 = ak

l−2; . . . ; a
k+1
0 = ak

1 .

}
(2)

From (2), we get,

ak
0 = ak+1

l−1 ⊕ cl−1a
k+1
l−2 ⊕ cl−2a

k+1
l−3 ⊕ · · · ⊕ c1a

k+1
0 ;

ak
1 = ak+1

0 ; ak
2 = ak+1

1 ; . . . ; ak
l−1 = ak+1

l−2 .

}
(3)

Equations (2) and (3) show that forward and backward generation of LFSR
sequences requires at most l XOR operations on bits and can be done very fast
in hardware and software (see for example [3]).

In this paper, we consider binary LFSRs. We note, however, that the technique
described in this paper also holds for LFSRs over larger alphabets and for other
linear sequence generators like cellular automata.

In Hellman method, we can use an LFSR to generate the random variations
of f as follows. For t Hellman tables we generate a sequence X1, X2, · · · , Xt of
n-bit vectors using an LFSR (n, p(x)) (say). Then we construct fi’s as follows:
fi(x) = f(x)⊕Xi for i = 1, 2, . . . t. We require the Xi’s to be distinct. Choosing
l = n (recall that f : {0, 1}n → {0, 1}n) and p(x) to be a primitive polynomial
will ensure this. Since the LFSR connection polynomial and the initial condition
are chosen randomly after f is given, it is not possible to a priori construct a
Fiat-Naor type example for the LFSR based Hellman method.

We now consider the application of LFSR sequences to the generation of func-
tions for use in (multiple) rainbow tables. Suppose there are r tables each having
t columns. We choose an LFSR of length l = n having a primitive connection
polynomial. Each bit vector in the sequence is of length n. Let the sequence be
X0, . . . , Xrt−1.

Define ψi(x) = x⊕Xi and fi(x) = ψi(f(x)) = f(x)⊕Xi. The first table uses
the functions f0, . . . , ft−1; the second table uses the functions ft, . . . , f2t−1; and
so on. The functions ψi defined using the LFSR sequence satisfy the desirable
properties discussed above. We mention some details.

Invertible: Each ψi is clearly invertible.
Efficient Generation: The function ψi is defined from Xi. Since the sequence

X0, . . . , Xrt−1 is efficiently generable in both forward and backward directions,
the corresponding functions are also efficiently generable.

Hardware Versus Software Implementation: A hardware implementation
of the rainbow method is explored in [10] using FPGA platform, where a
counter based method is used for function generation. However, a counter

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 33

is slower than an LFSR in hardware. Counter method is fast in software
implementation but slow in hardware implementation whereas LFSR based
method is very fast in hardware implemetaion.

Long Period: For all the ψi’s to be distinct, we need to have the Xi’s to be
distinct. The period of the sequence is 2n − 1. For the rainbow method, r is
a small constant and t = N1/3 = 2n/3. Thus, we have 2n − 1 > rt and hence
all the Xi’s are distinct as required.

Pseudorandomness: LFSR sequences satisfy some nice pseudorandomness
properties [8]. Using the ψ functions in the rainbow method means that at
each stage the output of f is being XORed with a bit vector from the pseu-
dorandom sequence X0, . . . , Xt−1. This, unlike the counter method, ensures a
uniform modification of all the bits of the output of f .

Avoiding Fiat-Naor: An advantage of using LFSR based method is that the
primitive connection polynomial and the intial condition can be chosen ran-
domly after the function f is specified. This ensures that it is not possible
to a priori construct a Fiat-Naor type example for the LFSR based rainbow
method. On the other hand, it is not clear that the use of LFSR method can
provably invert any one-way function. This is an open question.

5 LFSR Based Rainbow Method

In this section, we provide the details of the LFSR based implementation of the
rainbow method. As before, let f : {0, 1}n → {0, 1}n be the one-way function to
be inverted.

Suppose r tables each of size m×t are to be constructed in the precomputation
phase. Let p(x) be a primitive polynomial over GF (2) of degree n and 0 �=
X0, . . . , Xrt−1 be a sequence of n-bit vectors produced with an LFSR having
connection polynomial p(x) and initial condition X0. We define ψi,j(x) = x ⊕
X(i−1)∗t+j and fi,j(x) = ψi,j(f(x)), where i = 0, . . . , r − 1 and j = 0, . . . , t− 1.

Let S0, . . . , Sr−1 be r sets each containing m many randomly chosen n-bit
strings. We write Si = {x0

i , . . . , x
m−1
i }. For 0 ≤ i ≤ r− 1 and 0 ≤ j ≤ m− 1, we

define strings yj
i ’s in the following manner.

yj
i = (fi,t−1 ◦ fi,t−2 ◦ · · · ◦ fi,0)(x

j
i).

Let T0, . . . , Tr−1 be tables where Ti stores the set of pairs (x0
i , y

0
i), . . . ,

(xm−1
i , ym−1

i) sorted on the second component. For 0 ≤ i ≤ r, define Y 0
i =

X(i−1)∗t and Y 1
i = X(i−1)∗t+(t−1). With the ith table, we associate the pair

(Y 0
i , Y 1

i). These two values mark the start and end of the LFSR sequence re-
quired to generate the fi,j ’s used in table Ti. This completes the description of
the table preparation, which requires rmt invocations of the function f .

Next we describe the online search technique. We will be given a y and have
to find an x such that f(x) = y. Since there are r tables, we successively search
in each of the tables. Hence, it is sufficient to describe the search method in the
ith table Ti.

34 S. Mukhopadhyay and P. Sarkar

Algorithm. Search in table Ti

Input: An n-bit string y.
Output: An n-bit string x such that f(x) = y, else failure.
1. Z = Y 1

i ;
2. for j = t− 1 downto 0 do
3. set z = y ⊕ Z; W = Z;
4. for k = j + 1 to t− 1 do
5. z = f(z)⊕W ; W = L(W);
6. end do;
7. search for z in the second component of table Ti;
8. if found,
9. let (xs, ys) ∈ Ti such that z = ys;
10. set W = Y 0

i ; w = xs;
11. for k = 0 to j − 1 do
12. w = f(w) ⊕W ; W = L(W);
13. end do;
14. if f(w) = y, then return w;
15. end if;
16. Z = L−1(Z);
17. end do;
18. return “failure”;
end Search

The algorithm implements Equation (1). If in Line 14, we have equality, then
w is a pre-image of y, otherwise we have a false alarm. The total number of
invocations of f made per table is the same as the rainbow method and is ≈ t2/2.
The total number of invocations of f is ≈ rt2/2. The memory requirement is
rm many pairs of n-bit strings. Additionally, it is required to store (Y 0

i , Y 1
i) for

i = 0, . . . , r−1. Since for practical implementation, r will be a constant, this stor-
age requirement is negligible compared to the storage requirement for the tables.

6 Further Analysis

We consider the success probability of the method. The success probability of
any TMTO method is the probability that the required key is covered by the
tables. Let Psucc be the success probability of any such time/memory trade-off
method. As before, consider that we have r tables of size m×t each and let PSsingle

and PSr be the success probability for a single table and r tables respectively.
Let Ei be the event that the key is not in the ith table for i = 1, 2, . . . , r. So,
Prob(Ei) = 1 − PSsingle for all i = 1, 2, . . . , r. The probability of success for r
tables,

PSr = 1− Prob(E1 ∩ E2 ∩ . . . ∩ Er)

= 1−
r∏

i=1

Prob(Ei)

= 1− (1− PSsingle)
r
.

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 35

In [5], Hellman has given the following lower bound for PSsingle (assuming that
the encryption function is a random function.),

PSH
single ≥ 1

N

m∑
i=1

t−1∑
j=0

(
1− it

N

)j+1

.

In Hellman method, r = t, and PSH
t ≥ 1 −

(
1− 1

N

∑m
i=1
∑t−1

j=0 (1− it
N)

j+1
)t

=

PSH(m, t)(say).
Let PRB(m, t) be the success probability for a single rainbow table of size

m × t. In [11], Oechslin has given an approximate expression for PRB(m, t) as
follows:

PRB(m, t) = 1−
t∏

i=1

(
1− mi

N

)
where m1 = m and mi+1 = N ×

(
1− e−

mi
N

)
. Then the success probability for

r rainbow tables is: PRBr(m, t) = 1− (1− PRB(m, t))r.
Consider the tuple (# tables, # rows, # columns, Psucc, memory, runtime).

We have computed this tuple for each method with different values of N . Success
probability for multiple rainbow tables is seen to be better than Hellman or the
single rainbow method. On the other hand, the runtime for the multiple rainbow
method is slightly higher. In Table 1, we have taken the search space to be equal

Table 1. (# tables, # rows, # columns, Psucc, memory, runtime) with different N and
λ = 1

N Hellman single rainbow multiple rainbow
256 (219, 219, 218, 0.59, 239, 236) (1, 237, 219, 0.59, 239, 235) (8, 235, 218, 0.94, 239, 238)
264 (222, 221, 221, 0.59, 244, 242) (1, 243, 221, 0.59, 244, 241) (4, 241, 221, 0.90, 244, 243)
272 (224, 224, 224, 0.55, 249, 248) (1, 248, 224, 0.56, 249, 247) (8, 246, 223, 0.91, 249, 249)

to N . In this case, the success probability for Hellman (and rainbow method) is
around 0.6. This fact is also observed in [7]. Further, [7] considers the case where
the total coverage is equal to λ×N for λ ≥ 1 and present simulation results to
indicate that the success probability of Hellman method can be higher than 0.9
for λ > 2. As shown in Table 1, using multiple rainbow tables, it is possible to
achieve success probability of 0.9 even with search space N .

To achieve higher success probability with the same runtime and memory
requirement of rainbow method we can choose the parameters in a way similar
to [7] as follows: we choose three constants a, b and λ such that

– the memory required rm = N
a ,

– the runtime rt2

2 = N
b and the

– size of the search space rmt = λ×N .

36 S. Mukhopadhyay and P. Sarkar

Solving the three equations we get

r =
2N

λ2a2b
, m =

λ2ab

2
and t = λa.

For N = 264 and 272, taking λ = 0.8 and fixing the memory and runtime to be
equal to that of the rainbow method in Table 1 we get success probability of
around 73% with r = 2. While this is lower than 90%, it is still higher than 60%
achievable with a single rainbow table.

7 Conclusion

In this paper, we have studied the function generation problem for TMTO at-
tacks. We have pointed out a Fiat-Naor type problem with the counter method
employed for implementing rainbow tables. Our study of the required proper-
ties of the function generation leads us to suggest LFSR sequences as natural
candidates for such application. One advantage of using LFSRs is that it is not
possible to a priori construct a Fiat-Naor type example for LFSR based rainbow
method. Finally, we describe an LFSR based multiple table rainbow method for
TMTO attack. The time, memory and success probability of the multiple-table
rainbow method is analysed in greater details than has been previously done.

Acknowledgments

We thank Prof. Harald Niederreiter, Prof. Willi Meier, Prof. Vincent Rijmen
and Prof. Amr Youssef for carefully reading an initial draft of the paper.

References

[1] A. Biryukov and A. Shamir. Cyptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers, in the proceedings of ASIACRYPT 2000, LNCS, vol 1976, pp
1-13, 2000.

[2] Alex Biryukov, Sourav Mukhopadhyay and Palash Sarkar. Improved Time-
Memory Trade-offs with Multiple Data, in the proceedings of SAC 2005, LNCS,
to appear.

[3] S. Burman and P. Sarkar. An Efficient Algorithm for Software Generation of
Linear Binary Recurrences. Applicable Algebra in Engineering, Communication
and Computing, Volume 15, Issue 3/4, December 2004.

[4] A. Fiat and M. Naor. Rigorous time/space tradeoffs for inverting functions, In
STOC 1991, pp 534-541, 1991.

[5] M. Hellman. A cryptanalytic Time-Memory Trade-off, IEEE Transactions on
Information Theory, vol 26, pp 401-406, 1980.

[6] J. Hong and P. Sarkar. Rediscovery of Time Memory Tradeoffs. Cryptology eprint
archive. http://eprint.iacr.org/2005/090.

[7] I.J. Kim and T. Matsumoto Achieving Higher Success Probability in Time-
Memory Trade-Off Cryptanalysis without Increasing Memory Size, TIEICE: IE-
ICE Transactions on Communications/Electronics/Information and Syaytem, pp
123-129, 1999.

Application of LFSRs in Time/Memory Trade-Off Cryptanalysis 37

[8] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their applications,
Cambridge University Press, Cambridge, pp 189-249, 1994 (revised edition).

[9] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-
tography, pp 195-201. CRC, Boca Raton, 2001.

[10] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. Cracking Unix passwords
using FPGA platforms, Presented at SHARCS’05, 2005 in submission.

[11] P. Oechslin. Making a faster Cryptanalytic Time-Memory Trade-Off, in the
proceedings of CRYPTO 2003, LNCS, vol 2729, pp 617-630, 2003.

[12] P. Oechslin, Les compromis temps-memoire et leur utilisation pour casser les mots
de passe Windows (in French), Symposium sur la Securite des Technologies de
l’information et de la Communication SSTIC, Rennes, June 2004.

[13] RainbowCrack: General propose implementation of rainbow method,
http://www.antsight.com/zsl/rainbowcrack/.

[14] J.J. Quisquater and J.P. Delescaille. How easy is collision search? Application to
DES, in the proceedings of EUROCRYPT’89, LNCS, vol 434, pp 429-434, 1990.

[15] F.X. Standaert, G. Rouvroy, J.J. Quisquater and J.D. Legat. A Time-Memory
Tradeoffs using Distinquished Points: New Analysis and FPGA Results, in the
proceedings of CHES 2002, LNCS, vol 2523, pp 593-609, 2002.

[16] P.C. van Oorschot and M.J. Wiener. Parallel collision search with cryptanalytic
applications, Journal of Cryptology, 12(1), pp 1-28, Winter 1999.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 38 – 53, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Alert Data Mining Framework for Network-Based
Intrusion Detection System

Moon Sun Shin1 and Kyeong Ja Jeong2

1 Dept. of Computer Science, KonKuk University,
Danwol-Dong, Chungju-Si, Chungbuk 380-701, Korea

msshin@kku.ac.kr
2 ChungCheong University, Korea

kjeong@ok.ac.kr

Abstract. Intrusion detection techniques have been developed to protect
computer and network systems against malicious attacks. However, there are
no perfect intrusion detection systems or mechanisms, because it is impossible
for the intrusion detection systems to get all the packets in the network system.
Current intrusion detection systems cannot fully detect novel attacks or
variations of known attacks without generation of a large amount of false alerts.
In addition, all the current intrusion detection systems focus on low-level
attacks or anomalies. Consequently, the intrusion detection systems usually
generate a large amount of alerts. And actual alerts may be mixed with false
alerts and unmanageable. As a result, it is difficult for users or intrusion
response systems to understand the intrusion behind the alerts and take
appropriate actions. The standard format of alert messages is not yet defined.
Alerts from heterogeneous sensors have different types although they are
actually same. Also false alarms and frequent alarms can be used as Denial of
Service attack as alarm messages by themselves and cause alert flooding. So we
need to minimize false alarm rate and prevent alert flooding through analyzing
and merging of alarm data. In this paper, we propose a data mining framework
for the management of alerts in order to improve the performance of the
intrusion detection systems. The proposed alert data mining framework
performs alert correlation analysis by using mining tasks such as axis-based
association rule, axis-based frequent episodes and order-based clustering. It also
provides the capability of classifying false alarms in order to reduce false
alarms from intrusion detection system. The final rules that were generated by
alert data mining framework can be used to the real time response of the
intrusion detection system and to the reduction of the volume of alerts.

1 Introduction

Recently, due to the open architecture of the internet and wide spread of the internet
users, the cyber terror threatening to the weak point of network tends to grow[1,2].
Until now the information security solutions have been passive on security host and
particular security system.

As the network-based computer systems play the vital roles increasingly these
days, they have become the targets of the intrusions. Because of the large traffic
volume, IDS often needs to be extended and be updated frequently and timely.

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 39

Intrusion detection systems collect the information from various advantages within
network, and analyze the information. There are no perfect intrusion detection
systems or mechanisms, because it is impossible for the intrusion detection systems to
get all the packets in the network system. Especially, the unknown attacks can hardly
be found. Currently building the effective IDS is an enormous knowledge engineering
task. Recent data mining algorithms have been designed for the application domains
involved with the several types of objects stored in the relational databases. All IDSs
require a component that produces basic alerts as a result of comparing the properties
of an input element to the values defined by their rules. Most of systems perform the
detection of basic alarms by each input event to all rules sequentially, and IDSs raise
the alarm when possible intrusion happens. Consequently, IDSs usually generate a
large amount of alerts that can be unmanageable and also be mixed with false alerts.
Sometimes the volume of alerts is large and the percentile of the false alarms is very
high. So it is necessary to manage alerts for the correct intrusion detection. As a result,
nearly all IDSs have the problem of managing alerts, especially false alarms, which
cause seriously to impact performance of the IDSs. A general solution to this problem
is needed. We describe an approach that decreases the rate of false alarms. However,
many researches have been performed to apply the data mining techniques to the
intrusion detection systems. The data mining techniques is to discover useful
information from huge databases. It is used to analyze large audit data in the intrusion
detection system efficiently and just select features for constructing intrusion
detection models.

This paper provides an introduction to apply the data mining techniques for the
management of the alerts from the intrusion detection system. We propose an alert
data mining framework for IDSs. We also implement the mining system that analyzes
the alert data efficiently and supports the high-level analyzer for the security policy
server. The rest of this paper is organized as follows. Section 2 describes the
framework for the policy-based network security management and the data mining for
IDS as related works. In section 3 we propose an alert data mining framework.
Section 4 and 5 presents the implementation of the alert data mining framework and
the experiments of our system. In the last section, we will summarize our works.

Our approach is useful to improve the detection rate of network-based intrusion
detection systems and to reduce the sheer volume of alerts.

2 Related Works

2.1 Policy-Based Network Security Management

The policy-based network management is the network management based on policy.
A policy is defined as an aggregation of the policy rules. Each policy rule consists of
a set of conditions and a corresponding set of actions. The condition should be
described when the policy rule is applicable. If a policy rule is activated, one or more
actions contained by that policy rule may be executed. So, we can use the policy for
the modification of system behavior. The policy-based network management for the
network security is the concept and technology that uses the policy-based Network
Management for the network security.

40 M.S. Shin and K.J. Jeong

Figure 1 shows the policy-based network architecture and the relationships among
the components. The architecture of the policy-based network management for the
network security has hierarchical structure, and there are at least two levels.

One is a management layer that includes the security policy server system, and the
other is the enforcement layer that executes the intrusion detection to perceive and
prepare the hacking traffic between the connection points.

Fig. 1. Framework of Policy-based Network Management for Network Security

The security policy enforcement system consists of two blocks. One is
Sensor/Analyzer block that provides the detection and the analysis for the input
packet between the network connection points, the other is the PEP block that
provides an enforcement function for the security policy.

2.2 Data Mining for Intrusion Detection System

Some of the recent researches have started to apply the data mining techniques to the
IDSs[3]. Because of the sheer volume of audit data, the efficient and intelligent data
analysis tools are required to discover the behavior of the system activities. Data
mining generally refers to the process of extracting useful information from large
stores of data. The current intrusion detection systems do not offer grouping the
related alerts logically. Also the existing intrusion detection systems are likely to
generate false alerts, either false positive or false negative. To solve these critical
problems, the intrusion detection community is actively developing standards for the
content of the alert messages and some researches are on going about the alert
correlation.

In [8] they introduced probabilistic approach for the coupled sensors to reduce the
false alarm. An aggregation and correlation algorithm is presented in [7] for acquiring
the alerts and relating them. The algorithm could explain more condensed view of the
security issues raised by the intrusion detection systems.

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 41

Some of the recent researches have started to apply the data mining techniques to
the IDSs[7]. Because of the sheer volume of audit data, the efficient and intelligent
data analysis tools are required to discover the behavior of the system activities. Data
mining generally refers to the process of extracting useful information from large
stores of data. The aim of our research is to develop mining system for the analysis of
the alert data. The recent rapid development in data mining has made a wide variety
of algorithms available, drawn from the fields of statistics, the pattern recognition,
machine learning and databases. Some algorithms are particularly useful for the
mining audit data. In the other cases of the alert data, these algorithms are also useful.
Follows are the several data mining areas that support IDS:

Classification: maps data item into one of the several predefined categories. An ideal
application in the intrusion detection will be to gather sufficient the “normal” and the
“abnormal” audit data for a user or a program.
Association rules: determines the relationships between the fields in the database
records.
Frequent episodes: models the sequential patterns. These algorithms can discover
what time-based sequence of audit events and frequent episodes are.
Clustering: gathers similar patterns to the same group. These algorithms can measure
the similarity of sequence.

2.3 Alert Correlation

In the response to the attacks and potential attacks against networks, administrators
are increasingly deploying IDSs. IDSs products have become widely available in
recent years. But the intrusion detection techniques are still far from being perfect.
These systems monitor hosts, networks and critical files and these systems deal with a
potentially large number of alerts. These systems should report all alerts to the
security policy server or operator. So the security policy server has to manage the
reporting alerts in order to build the new security policy rule. But current intrusion
detection systems do not make it easy for operators to logically group the related
alerts. Also the existing intrusion detection systems are likely to generate false alerts,
be it false positive or false negative. To solve these critical problems, the intrusion
detection community is actively developing standards for the content of the alert
messages and some researches is on going about the alert correlation. In [8] they
introduced probabilistic approach for the coupled sensors to reduce the false alarm.
An aggregation and correlation algorithm is presented in [9] for acquiring the alerts
and relating them. The algorithm could explain more condensed view of the security
issues raised by the intrusion detection systems.

The current intrusion detection systems usually focus on detecting the low-level
attacks and/or the anomalies. None of them can capture the logical steps or attack
strategies behind these attacks. Consequently, the IDSs usually generate a large
amount of alerts. Whereas actual alerts can be mixed with false alerts and also the
amount of alerts will also become unmanageable. As a result, it is difficult for the
human users or intrusion response systems to understand the intrusions behind the
alerts and take the appropriate actions. In [10] they propose the intrusion alert
correlator based on the prerequisites of intrusions.

42 M.S. Shin and K.J. Jeong

3 An Alert Data Mining Framework

In this chapter, we describe the outline of an alert data mining framework for IDS.
The proposed alert data mining framework consists of four components such as the
association rule miner, the frequent episode miner, the clustering miner and false
alarm classification miner. In order to perform alert correlation analysis the three
formers are proposed and the latter is for reducing false alarms. The association rule
miner can find the correlation among the attributes in the record, although the
frequent episode miner searches event patterns in records. In addition, the clustering
miner discovers the similar attack patterns by grouping the alert data with similarity
among the alert data. The clustering analysis provides the data abstraction from the
underlying structure. And it groups the data objects into the clusters so that the objects
belonging to the same cluster are similar, while those belonging to the different
cluster are dissimilar. Because we consider the characteristics of the alert data, we
improve the existing data mining algorithms to create the candidate item sets that
include the only interesting attributes.

3.1 Axis Based Association Rule Miner

The existing association rule mining algorithms search for interesting relationships in
the transaction database. However, we expanded the Apriori algorithm without
grouping the items by T_id because of the characteristics of the alert data.

The alert data is different from that of the general transaction database. In addition,
the rules can be generated only with attributes of interest. The process of the
expanded algorithm is composed of three steps. The steps of the process of the
association rule miner are as follows.

Step 1) Find all frequent item sets:
In this step, the candidate item sets are generated for the items composed of the
attributes of interest in the selected tables, and then a set of frequent itemsets is
generated for each candidate itemset which satisfies the minimum support
(minsupp) in the entire records (D). Here, items that do not satisfy the minimum
support are removed in the pruning step

Step 2) Generating the strong association rules from the frequent item sets:
In this step, the association rules are generated for the frequent itemsets after
pruning, which satisfy the minimum support. Here, the minimum
confidence(minconf) is calculated using the minimum support among frequent
items to generate the association rules. The minimum confidence refers to the
probability that forecasts how much items satisfying the minimum support

Step 3) Generating the final rules:
In this step, the final rules that satisfy the minimum confidence, namely, Conf(R)
minimum confidence, are generated to be stored in the final rule table.

3.2 Axis Based Frequent Episodes Miner

The frequent episodes mining is to search a series of event sequences for the
frequently occurring episodes. An episode is defined by a sequence of the specific

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 43

events that occurs frequently. The events composed of a sequence are closely related
with one another. Here, exploring is to find all the frequent episodes within the rate of
time windows when the episodes occur in a set of time windows that defined by user
satisfies the minimum frequency. A sequence pattern and an episode are similar in
that they explore patterns in the sequence. However, they are different in that a
sequence pattern explores a whole database, while an episode explores while using
windows. Using episodes, an infiltration detection system can detect the frequently
repeated patterns, and apply them to the rule or use them as the guidelines for the
service refusal attacks.

When the existing algorithms are used to apply the data mining to a search for the
useful patterns from the alert data, the correlations among the attributes must be
considered. The alert data comprise the various attributes, and each of these attributes
has many values. Because all of these data cannot be converted into a binary database,
we propose an expanded algorithm using axis-attribute. In addition, as the standard
attributes are applied, only the items including the standard attributes have to be
considered in generating the candidate items. This reduces the number of the
unnecessary episodes in generating the rules. Frequent episode mining is carried out
through the following 3 steps.

Step 1) Generating candidate episodes:
In this step, the tuples composed of the attributes of interest are arranged by given
time window units. Time within a window must be included in the time span of the
window. That is, win = Te - Ts + width (w) , win_start time <= time < win_end time.
A set of candidate episodes is generated from the table arranged in window unit.

Step 2) Generating frequent episodes:
In this step, a set of frequent episodes, which satisfy the minimum frequency, are
extracted from the set of the candidate episode.

Step 3) Generating final episodes:
Frequent episodes, which satisfy the minimum confidence, are generated from the
set of frequent episodes.

3.3 Order Based Clustering Miner

Clustering analysis is the technique to find the distribution or the patterns of given
data by classifying the data into groups based on similarity [11]. Such a clustering
analysis technique improves the efficiency of the analysis of the alert data, and
abstracts high-level meanings through grouping data. This technique is a process of
grouping the sets. Here, individuals belonging to the same cluster are homogenous,
and individuals belonging to different clusters are heterogeneous.

There are several methods of measuring the similarity between the entities but
mainly the concept of distance is used. The cluster miner implemented in this paper
used Euclidean distance function in order to define the similarity between the entities.
It is based the assumption if the data entities have the same values then they may be
similar. Considering the characteristics of the alert data, we implemented the modified
CURE algorithm, which can cluster the datasets with the multi-dimensional attributes.
The implemented clustering miner has four steps of process.

44 M.S. Shin and K.J. Jeong

Step 1) Data preprocessing
Step 2) Clustering alert data
Step 3) Analyzing the result of clusters
Step 4) Classify new alert data

In Step 1, the input data are preprocessed so that the dataset is suitable for the
clustering. This process is largely composed of two tasks. One is to select appropriate
attributes for efficient clustering and the other is to add extended attributes if
necessary. The domain knowledge is required in this step. The purpose of clustering
the alert data is grouping the input data to abstract the meaning of sequence among
the groups. In Step 2, the input data preprocessed in Step 1 are clustered. The CURE
algorithm was used in generating clusters from the given dataset [11]. Step 3 is to
abstract the relationships among clusters generated in Step 2 by analyzing the causes
of generation. To abstract the relationships among clusters, we used the distribution of
the alerts previous to the alerts included in the generated clusters. The previous alert
of an alert is the most recently occurred one among those that have the same source
address and the destination address as that of the alert.

Fig. 2. Alert Data Clustering System

It is possible to search the alerts frequently occurring prior to the alerts included in
the cluster by analyzing the distribution of the alerts previous to the alert data
included in a specific cluster. In Step 4, when the new alert data occur, the data are
automatically clustered and the possible next alerts are forecasted using the data
cluster model and the cluster sequences generated previous steps.

A clustering mining system that analyzes the similarity of the alert data is
composed of Data Processor, Alert Cluster, Cluster Analyzer and Alert Classifier. The
architecture of clustering miner system is shown in Figure 2. Data Preprocessor
preprocesses the input dataset so that the dataset can be clustered by Alert Cluster.
Here, extended attributes based on domain knowledge are added for efficient and
accurate clustering, and selected attributes are normalized. Alert Cluster clusters the

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 45

data preprocessed by Data Preprocessor. The final output of this module is a set of
grouped data. The output is stored in the rule database, and is used in the automatic
classification of the new alerts and the analysis of the relationships among generated
clusters. Cluster Analyzer analyzes the causes of generation of clusters. The output of
the module is represented by the sequence of clusters. The output is used in analyzing
the relationships among clusters, and in predicting a set of possible alerts for a
specific alert. Alert Classifier classifies new alerts into appropriate clusters using the
cluster model generated by Alert Cluster, and abstracts possible alerts to occur next
by using the sequence generated by Cluster Analyzer.

3.4 Building False Alarm Classification Model

The idea of false alarm classification model is to filter the false alarms from intrusion
detection system and minimize the false alarm rate by matching the alarms compared
to the false alarm classification rules. Then we can expect the higher detection rate of
intrusion detection system at the same time. For that purpose, we applied data mining
techniques for the classification. The data mining techniques can be generally used in
data reduction and data clustering. Classification is to build a model(called classifier)
to predict future data objects for which the class label is unknown. Decision tree, rule
learning, naive-Bayes classification and statistical approaches can be used. In general,
given a training data set, the task of classification is to build a classifier from the data
set such that it can be used to predict class labels of unknown objects with high
accuracy. So we extend the basic decision tree algorithm C4.5[4] to the association
based classification for the feature construction.

Network-based IDS outputs the sheer volume of alerts that can be mixed with false
alerts. The false alarm is the alarm classified as attack while in fact it is not. Actually
a large volume of false alarms makes it impossible for IDS to respond immediately
and prevents IDS from correct detection. So we propose false alarm classifier to
improve intrusion detection rate of IDS.

Here is the framework of our approach that has two parts: First is feature
construction and second is classification part as shown in figure 3. From the sensor,
we preprocess the alert data and store them into database. And then we construct the
false alarm classification model by learning false positive alarm pattern from false
alarm decision tree using training dataset.

Building accurate and efficient classifiers for large databases depends on training
dataset. We used association rule-based feature construction. We built our false alarm
classification model by using decision tree especially C4.5[4] algorithm because this
algorithm is very efficient in memory and performance.

Fig. 3. Framework of False Alarm Classifier

46 M.S. Shin and K.J. Jeong

The whole process consists of four phases: feature construction, rule generation,
rule analysis and classification. In the first phase, feature construction, the
preprocessor computes the high correlated attributes based on associative feature
construction in order to decide the nodes for decision tree. Association rule mining
searches for interesting relationships among the given data set under the assumption
in terms of confidence and support. Large itemsets of training dataset were extracted
as the feature from the alert_DB and stored in attribute_list table. We sent Darpa
Tcpdump data through the Snort and counted all the false positives for the generation
of training dataset. The training data set was stored in alert_DB w.r.t. each protocol
after preprocessing task because they were raw network data. In the second phase,
rule generation, the decision tree builder computed the complete set of rules in the
form of R: P->c, where P is the pattern in the training data set, and c is a class label
such that sup(R) and conf(R) pass the given support and confidence thresholds,
respectively. Furthermore, following task prunes some rules and only selects a subset
of high quality rules for classification. Before the tree construction, information gain
of each attribute must be computed. The attribute which had the highest value of
information gain can be used as root node. The expression of (1) is the information
value for each attributes and (2) is the entropy of each attribute.

Information = -log2p (p = number of attributes) ……… (1)
Entropy(S) =-pFP log2 pFP - pTP log2 pTP ………… (2)

Using the values of (1) and (2), we can compute the information gain value of each
attributes as shown in (3) where S is the class labels of nodes, Sv is the class labels of
branches. Then decision tree builder can make root node and repeat the process of
computing (1)-(3) and decide root node of subtree again. The recursive process will
be finished when there is no split. Then final rule sets are generated after pruning.

Gain(S, A) = Entropy - |Sv | ⁄ |S|*Entropy(Sv) ………… (3)

The pruning process was performed to remove outliers. Final rules were generated as
the form of <IF><THEN>. These rules were stored in the rule table, too.

In the third phase, rule analysis, the validation task was performed about
constructed decision tree using test data. If needed, the tree must be overfitted and
pruned.

In the last phase, the classification model classifies new data by pattern matching
with rule and gives the class for each new data.

4 Implementation

The alert data mining system was implemented on the base of windows XP as
operating system and Oracle 8i as database. And it was implemented by Java
language. Above all, the security manager can select the attributes of interest, which
can filter the unnecessary candidate item sets and reduce the meaningless rules.

First, users select database table in which the alert data were stored and then
choose the axis attribute to be mined. If they want to mine the association rules, they
try to compute support and confidence. In mining system, those thresholds are
essential, because the knowledge from the result of mining process was some
confidence information.

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 47

4.1 Examples

As described above, when we used the axis attributes, we deducted a great many
candidate itemsets and useless rules. The final association rules were stored in the rule
tables. We tested the implemented mining system using the virtual alert data. The
alert data used in test were obtained by simulation programs. Table 1 presented an
example of the final rules after mining task. Here we found out the correlations
among the alert data inter-records or intra-records.

Table 1(a) showed the example rule of the results after the association rule mining.
These rules had some confidence information. For example, the first rule meant that
there was close correlation between “attack id” 50 and “destination port” 21. That
also implied the strong relation between the attributes “attack id” and “destination
port”. Therefore we were able to extract the relationships between the attributes using
the association rule miner. The final rules of the frequent episode mining were shown
in Table 1(b). We were able to find sequential pattern of the events as results. In the
example, we might guess the fact that attack 5001 brings about attack 5007.

It was a simple test, yet the alert data used in our experiments were just simulated
data. In addition, we should verify the implemented mining engine. By the way, we
assured that our mining engine for the alert analyzer should provide the confidence
information to the security policy server.

The prototype of false alarm classifier consists of four components such as Data
Preprocessor, Feature Constructor, Decision Tree Builder and Data Classifier. Data
Preproceesor transformed binary raw data and stored them into database table.
Feature Constructor selects attributes using association rule-based or probabilistic
correlation method. Decision Tree Builder constructs classification model based on
training data and Data Classifier actually classifies test data.

Final rules were also stored in the relational database and they were used by
security administrator or intrusion detection system.

Table 1. Example of Final Rules

(a) Association Rule

Association Rule Meaning
50<=>21
(supp:49,
conf:100%)

Attribute 50(Atid) correlated with
attribute 21(dsc_port)

21<=>tcp
(supp:49,
conf:100%)

Attribute 21(dsc_port) correlated with
attribute tcp(protocol)

… …
(b) Frequent Episodes Rule

Frequent Episode Rule Meaning
5001:210.155.167.10:21:tcp
=>
5007:210.155.167.10.21 :tcp
(fre:10, conf:100%,
time:10sec)

If 5001(Ftp Buffer Ovrflow)
occur, then 5007(Anonymous
FTP) occur together.

… …

48 M.S. Shin and K.J. Jeong

Fig. 4. Architecture of False Alarm Classifier

Figure 4 shows the architecture of the false alarm classifier and the relationships
among the components. The false alarm classifier was implemented by Java and
Oracle 8i as database. For evaluation, we used Snort-1.8.7 as sample IDS. The
implemented prototype had three levels such as user interface, data repository and
main program that were composed of database connection, decision tree builder and
data classifier. Decision tree builder class constructs the decision tree of false positive
with the training data set. Data classifier class classifies the test data by using the
rules of the decision tree. All the rules and dataset were stored in the relational
database. C4.5 algorithm as the extension of association rule based-classification for
the decision tree of false alarm classification. The C4.5 algorithm has the advantage
of memory and performance comparing to other decision tree algorithms.

5 Experiments and Evaluation

this section, we describe the experimental study conducted in order to evaluate our
mining system. Our experiments were performed with the factors like minimum
support and window width of the frequent episodes. We evaluated 32,000 records of
the simulated alert data. The experiments were designed for two objectives. First, how
can we decide the minimum support for the alert data. And second, we estimated of
window width which could make the frequent episodes miner keep higher
performance. Figure 5 showed the time of each minimum support value. In the
association rule miner, if the value of minimum support was smaller than the
performance is higher. In the frequent episodes miner, the support depended on
window width. Therefore time was less related with minimum support. In Figure 5,
we could see a little change in the case of the frequent episodes. Figure 6 showed the
performance of the frequent episodes miner as the window width changes. We
experimented the time as the window width was increased. The frequent episode
miner required time window value, frequency and confidence. The results of the
frequent episode miner were affected by time variables. Like the association rules, the
frequent episodes rules were stored in the final rule table, too. Then these rules were
used in the security policy server to construct the active policy rule.

For the clustering miner, two experiments were carried out. The first experiment
was to test the performance of clustering of the implemented system. This experiment
evaluated the accuracy of each cluster generated by the clustering miner.

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 49

Fig. 5. The results of performance evaluation as the value of minimum support

Fig. 6. The performance of frequent episodes mineras the window width

The second experiment was to define the cluster previous to each cluster generated,

and to determine if the sequence of clusters could be generated based on the sequence.
The training data of DARPA 1998 were TCP Dump data composed of network traffic
for 7 weeks. The dataset contained approximately 5,000,000 data instances including
various types of infiltrations that could occur in network environments. In addition,
the test dataset contained approximately 2,000,000 data instances, which were based
on network traffic for two weeks.

Table 2. Test data distribution and Results of clustering test

Attack type Distribution rate Results:Clustering accuracy

DOS 73.90% 98.34%
R2L 5.20% 47.52%

U2R 0.07% 51.37%

Probing 1.34% 83.84%

50 M.S. Shin and K.J. Jeong

Table 2 showed the distribution rate of the test data for each attack type. Large
amount of the test data is DOS attack type. Table 2 also showed the result of an
experiment applying the test dataset to the model created from the training dataset.

As shown in Table 2, the test data were assigned to clusters with relatively high
accuracy for attack types such as DOS and Probing, which were distributed in a
relatively large amount in the training dataset. However, the attack types such as R2L
and U2R, which were rarely distributed in the training dataset, were clustered less
accurately.

Table 3. Results of clustering analysis

The second experiment was defining the previous cluster of each generated cluster,
and determining if the sequence of clusters could be generated based on the defined
previous clusters. The distribution of previous alert data for each cluster generated is
as in Table 3. Figure 7 showed the sequences generated from the results shown in Table
3. This experiment generated sequences of clusters by analyzing the distribution of
previous alerts, which were the cause of the generation of the resulting sequences, and
showed that it was possible to provide the method of forecasting the future type of the
alerts occurring by abstracting the sequences of clusters through integrating each
sequences of clusters generated.

Fig. 7. Generated cluster sequence base on table 3

Here, we can find out potential alert sequences, which might mean attack scenario
or strategies behind attack. It provides for the intrusion detection system to capture
the high-level detection.

We examine the experimental results of our false alarm classifier. Two
experiments were performed. For the experiments, we placed the implemented system
in front of Snort-1.8.6[5]. And we sent the Darpa tcpdump data through the Snort that
obtained the false alarm classifier. Our performance results are compared to those of
only Snort alone. Other experiments were preformed to handle the processing of an
input element at nodes of decision tree efficiently. The ability of false classification
depended on feature construction. We proposed association rule-based classification.

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 51

So the features for nodes of decision tree were selected by association rule-based
approach. Also we tried to evaluate statistical based correlation analysis for the
feature construction. The mixed method of those approaches was evaluated for the
best feature construction. Experimental data were Darpa 1998 raw packet data of
DOS attack. We could find out the different nodes of the each method for feature
construction, the correctness of false alarm classifier and the performance of the
detection rate of Snort. The training data set for the classification model was the
tcpdump data for 7 weeks. We only chose the DOS attack labeled data among the
various types of attack data. The ratio of normal and intrusive was same.

We used 1-4 weeks data as training dataset and 5-7 weeks data as test data. For
utilizing the decision tree, we had to remove the improper attributes and select
appropriate attributes. For the feature construction, we proposed association rule-
based feature selection. However, we tried to do statistics approach too.

 The correctness of false alarm classification model
From the first experiment, the nodes of decision tree were made and two decision
trees were constructed. One is the statistical correlation based decision tree. And the
other was constructed by the feature construction based on association rule based
approach. We evaluated these decision trees correctly.

Fig. 8. Detection rate of Normal Packet for Each Decision Tree

Figure 8 shows the results of detection rate of normal packets. The experiments

were performed with three methods like association based, statistical correlation
based and the mix of both above methods. Figure 10 shows that association rule-
based decision tree marked higher performance than statistical correlation based
decision tree. And among the three approaches, the mixed method was the most
efficient in detection rate of normal packet.

 The performance of the IDS with false classifier
The last experiment was performed for the evaluation of false positive rate of IDS in
both cases: with false alarm classifier and without false alarm decision tree. For this
experiment, we used Snort-1.8.6 open source[5] and Darpa data that were already
used in previous experiments. As shown in figure 9, the mixed method and
association rule based decision tree were more effective. But in the case of week 5
data, it showed especially high value.

52 M.S. Shin and K.J. Jeong

Fig. 9. Results of False Positive Rate of Each Decision Tree

6 Conclusion

In this paper we propose a data mining framework for the management of alerts in
order to improve the performance of the intrusion detection systems. The proposed
alert data mining framework performs alert correlation analysis by using mining tasks
such as axis-based association rule, axis-based frequent episodes and order-based
clustering. It also provides the capability of classifying false alarms in order to reduce
false alarms from intrusion detection system. We presented a false alarm
classification model to reduce the false alarm rate of intrusion detection systems using
data mining techniques. The proposed model could classify the alarms from the
intrusion detection systems into false alert or true attack. We also implemented the
false alarm classifier of DDOS attack. We proved that the proposed false alarm
classifier worked effectively in reducing false alarm rate.

The contribution of this paper is that we have adapted and extended the notions
from data mining for the alert correlation. The approach has the ability to aggregate
the alerts and to find out the alert sequences. And it also has the advantages in
reduction of alert volume. For each new alert, we compute similarity and enter the
alert to similar cluster. And then for each cluster, we compute the pre-cluster and
post-cluster so that we can discover the alert sequences. We can predict possible
attack sequences in the intrusion detection domain. But we have to improve the
efficiency of speed.

References

1. D. Schnackenberg, K. Djahandari, and D. Sterne, "Infrastructure for Intrusion Detection
and Response", Proceedings of the DARPA ISCE, Hilton Head, SC, Jan. 2000

2. M.J. Lee, M.S. Shin, H. S. Moon, K. H. Ryu "Design and Implementation of Alert
Analyzer with Data Mining Engine", in Proc. IDEAL’03, HongKong, March. 2003

3. W. Lee, S. J. Stolfo, K. W. Mok "A Data Mining Framework for Building Intrusion
Detection Models in Proc. The 2nd International Symposium on Recent Advances in
Intrusion Detection (RAID 1999).

4. J. Ross Quinlan, C4.5: Programs for and Neural Networks, Machine Learning, Morgan
Kaufman publishers, 1993

 An Alert Data Mining Framework for Network-Based Intrusion Detection System 53

5. Snort. Open-source Network Intrusion Detection System. http://www.snort.org.
6. E.H. Spafford and D. Zamboni., “Intrusion detection using autonomous agents”, Computer

Networks, pp. 34:547–570, 2000.
7. H. Debar and A.Wespi, “Aggregation and correlation of intrusion-detection alerts”, In

Recent Advances in Intrusion Detection, in Lecture Notes in Computer Science, pp. 85 –
103, 2001.

8. A. Valdes and K. Skinner, “Probabilistic alert correlation”, in Proc. The 4th International
Symposium on Recent Advances in Intrusion Detection (RAID 2001), pp. 54–68, 2001.

9. Tcpdump/Libpcap, Network Packet Capture Program, http://www.tcpdump.org, 2003
10. P. Ning and Y. Cui., “An intrusion alert correlator based on prerequisites of intrusions”,

Technical Report TR-2002-01, Department of Computer Science, North Carolina State
University

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 54 – 67, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Key Factors Influencing Worm Infection
in Enterprise Networks

Urupoj Kanlayasiri1 and Surasak Sanguanpong2

1 Office of Computer Services, Kasetsart University,
Chatuchak, Bangkok 10900, Thailand

urupoj.k@ku.ac.th
2 Department of Computer Engineering, Kasetsart University,

Chatuchak, Bangkok 10900, Thailand
surasak.s@ku.ac.th

Abstract. Worms are a key vector of computer attacks that produce great dam-
age of enterprise networks. Little is known about either the effect of host and
network configuration factors influencing worm infection or the approach to
predict the number of infected hosts. In this paper we present the results of real
worm attacks to determine the factors influencing worm infection, and to pro-
pose the prediction model of worm damage. Significant factors are extracted
from host and network configuration: openness, homogeneity, and trust. Based
on these different factors, fuzzy decision is used to produce the accurate predic-
tion of worm damage. The contribution of this work is to understand the effect
of factors and the risk level of infection for preparing the protection, respon-
siveness, and containment to lessen the damage that may occur. Experimental
results show that the selected parameters are strongly correlated with actual in-
fection, and the proposed model produces accurate estimates.

1 Introduction

A self-propagating program or worm was released into the Internet and infected a lot
of vulnerable hosts. A dramatic increase in worm outbreaks occurred in the last few
years, including Code Red [1], Code Red II [1-3], Nimda [5], and Slammer [4]. Code
Red infected hosts running Microsoft Internet Information Server by exploiting an
.ida vulnerability. Code Red II is even more dangerous than the original: rebooting of
an infected machine did not halt the worm. Nimda used multiple mechanisms for
infection: email, open network shares, and browsing of compromised web sites.
Slammer rapidly spreads across the Internet by exploiting a buffer overflow vulner-
ability in Microsoft’s SQL Server or Microsoft SQL Server Desktop Engine.

All above worms exploited holes in optional component of servers (except Nimda –
targets both server and client). Recent worms such as Blaster [6] and Sasser infect vast
number of desktop computers in enterprise networks by exploiting vulnerabilities in the
default configuration of desktop operating systems. The trend of worm today is to attack
the desktop computers that comprise the majority of hosts in most organizations. Since the
prevention, treatment [10-12], and containment [3, 13, 14] are still not effective and rapid
enough for handling worm propagation. Therefore, to understand the effect of factors

 Key Factors Influencing Worm Infection in Enterprise Networks 55

influencing worm infection, and to predict the worm damage are important for preparing
the protection planning, incident responsiveness, user awareness, and policy enforcement.

This paper addresses two basic questions: (1) What are the factors influencing
worm infection in networks? and (2) What is the model to predict the worm damage?
From the first question, the worm infection depends upon several factors. However,
there is no exact answer to the question of which factors are influential for infection
significantly. We study host and network configuration factors to answer this ques-
tion. From the second question, the model will predict the worm damage before the
attack occurs. Our basic idea is to develop the measurements of different factors, and
to predict the worm damage by obtaining and fusing the values from these different
measurements. There are many ways for information fusion, but in this problem,
fuzzy decision must be better than other methods, because the measures are uncertain
and imprecise, and human experts can have some intuition or knowledge on the char-
acteristics of measures that relate to worm behavior [7].

The remainder of this paper is organized as follows. In Section 2, we give related
work. Section 3 presents the factors influencing worm infection and their measure-
ments. We propose the prediction model of worm damage in Section 4. The experi-
mental results are described in Section 5. Finally, Section 6 gives the conclusion.

2 Related Work

In studying the factors influencing worm infection, Wang et al. [22], discuss factors
that influence infection of computer viruses. These factors are system topology, node
immunity, temporal effects, propagation selection, multiple infections, and stochastic
effects. The simulation study considered hierarchical and cluster topologies with the
selective immunizations of hosts. Both topologies support critical infrastructure that
contrasts with the fully connected, open nature of the Internet. Ellis [18] describes the
analytical framework for worm infection in relational description and attack expres-
sion. Four conditions for infection are targeting, vulnerability, visibility, and infect-
ability, which are used to calculate the set of infectable hosts.

There are several approaches to model the spread of worms in networks, princi-
pally the Epidemiological model [15], the two-factor worm model [16], and the Ana-
lytical Active Worm Propagation (AAWP) model [17]. The Epidemiological model is
a simple model that explains the spread of computer viruses by employing biological
epidemiology. The number of infected hosts depends on vulnerability density and
scanning rate. In this model, the infection initially grows exponentially until the ma-
jority of hosts are infected, then the incidence slows toward a zero infection rate.

The two-factor worm model describes the behavior of worm based on two factors:
the dynamic countermeasure by ISPs and users, and a slowed down worm infection
rate. This model explains observed data for Code Red and the decrease in scanning
attempts during the last several hours before it ceased propagation. The AAWP model
extends the model of worms that employ random scanning to cover local subnet scan-
ning worms. Parameters in this model include the number of vulnerable machines,
size of hitlists, scanning rate, death rate, and patching rate. AAWP better models the
behavior of Code Red II than the previous models.

56 U. Kanlayasiri and S. Sanguanpong

Unlike all above models, our model does not require observing variables during at-
tacks. Therefore, it can be used to predict worm damage before the attack occurs. The
model does not rely on attack type and configuration of worm program. Such factors
are: (1) scanning rate in the Epidemiological and the AAWP models and (2) size of
hitlists in the AAWP model. In addition, our model does not depend on human factors
that are hard to simulate in the real world: (1) patching rate in the AAWP model and
(2) dynamic countermeasure by ISPs and users in the two-factor worm model.

The worm damage depends on several factors. However, there is no exact answer
to the question of which factors are optimal for damage prediction. In this paper, we
analyze factors extracted from host and network configuration: openness, homogene-
ity, and trust. Fuzzy decision will combine them to find the prediction result. The
important task of fuzzy decision that is often difficult and time consuming is the de-
termination of membership functions. Traditionally it can be performed by experts but
it is not always the most suitable method. In this paper, we use inductive reasoning
method to define membership functions.

Several techniques, such as inductive reasoning, neural networks, and genetic algo-
rithms, have been used to generate membership functions and production rules. In in-
ductive reasoning, as long as the data is not dynamic the method will produce good
results [8]. Inductive reasoning method uses the entire data to formulate membership
functions and, if the data is not large, this method is computationally inexpensive. Com-
pared to neural networks and genetic algorithms, inductive reasoning has an advantage
in the fact that the method may not require a convergence analysis, which in the case of
neuron networks and genetic algorithms is computationally very expensive.

3 Factors Influencing Worm Infection

We initially study an enterprise network and scanning worms. The enterprise network N
is a set of hosts {NB1B, NB2B, …, NBnB} partitioned into two mutually exclusive sets, the set of
vulnerable hosts S and immune hosts I, with sizes n(S) and n(I), respectively. The total
population is n(S) + n(I) = n. The scanning worm assumption is that worms target to
exploit vulnerability of desktop computers that comprise the majority of hosts in an
enterprise network. The scanning worms require no user intervention for their execu-
tions. We define the worm damage as the number of infected hosts in the network.

The general behavior of worms [18-21] includes three processes: scanning, attack-
ing, and propagation. We study and define parameters that relate to these three proc-
esses: openness, homogeneity, and trust. Openness describes the quantity of hosts
that can be scanned; homogeneity defines the area of infection – the more hosts with
the same vulnerability, the more number of infected hosts. Finally, trust determines
relations among hosts that worms use for propagation. Three factors are extracted
from the host and network configuration: openness (O), homogeneity (H), and trust
(T). The worm damage (D) can be given as a function of these factors:

()THOD ,,Γ= (1)

3.1 Openness

Openness describes the vulnerability of enterprise networks to scanning by worms.
Typically, machines that are hidden from scanning by worms are safer than visible

 Key Factors Influencing Worm Infection in Enterprise Networks 57

ones. The visibility can be configured by Network Address Translation (NAT) or
firewall technology. Openness (O) can be measured by the ratio of the number of
hosts that can be scanned by any host to the total number of hosts by

n

e

O j
jS

=
)(ξ

 (2)

where eBjB is the collection of hosts on subnetwork j, sξ is a function that selects hosts
in eBjB that can be connected to via TCP, UDP or ICMP from outside the network j, and
n is total number of hosts on the network. For example the network E shown in
Figure 1, if the gateway G1 configures NAT for the network E3 then the enterprise
network E has O = 0.66.

3.2 Homogeneity

Homogeneity measures the density of hosts that can be attacked by a worm. When a
worm attacks a host, it will exploit other hosts through the same vulnerability. In this
study, we assume that the operating system, rather than application software, repre-
sents the mode of vulnerability. Therefore, the homogeneity (H) is defined as the
homogeneity of operating system by hosts on the network:

)(max
1

kn
n

H
Kk∈

= (3)

where K is a set of operating system types on the network, n(k) is the number of hosts
running operating system k, and n is total number of hosts on the network. For the
example network E shown in Figure 1, b operating system has the maximum number
of hosts, H = 0.53.

3.3 Trust

Trust is a relationship between a trustor and a trustee. The trustor allows the trustee to
use, manipulate its resources, or influence the trustor’s decision to use resources or
services provided by the trustee. The trust relationship can be represented by a di-
rected graph. We use a nondeterministic finite-state automaton M to describe the trust
relationship of desktop computers in the enterprise network, where M = (Q, P, f, q BoB,
F) consists of a set Q of states, an input alphabet P, a transition function f between
states Q which depends on the input, a starting state q BoB, and a subset F of Q consisting
of the final states. The set of states Q is a group of machines in enterprise network.
The function f represents the propagation of a worm. q BoB is the starting node that the
worm first exploits and F contains a set of possible attacked nodes. The input for
function f is assumed to be a constant. Then, T can be calculated by:

[]
()1

1) | (
1

−

−=
= =

nn

iqFn
T

n

i
o

(4)

58 U. Kanlayasiri and S. Sanguanpong

Fig. 1. Extracted factors of enterprise network

where n(F | qBoB = i) and n are the number of elements in the set F with the starting
node i and the number of elements in the set Q, respectively. In Figure 1, the directed
graph of nodes illustrates the example of trust relationship. Using equation (4), T = 0.17.

4 Fuzzy Prediction Model

The model uses fuzzy decision for the prediction. Three steps are performed; fuzzification,
inference, and defuzzification. The fuzzy sets for inputs and output are as follows.

• Input: evaluation factors (O, H, T)
Fuzzy set: {Low, Middle, High}

• Output: worm damage (D)
Fuzzy set: {Normal, Critical}

The exact partitioning of input and output spaces depends upon membership func-
tions. Triangular shapes specify the membership functions of inputs by inductive
reasoning. The damage threshold, which is defined by an organization, divides the
output into two classes. Expert experiences are used to generate production rules. For
fuzzy inference, we use the minimum correlation method, which truncates the conse-
quent fuzzy region at the truth of the premise. The centroid defuzzification method is
adopted to yield the expected value of the solution fuzzy region.

4.1 Fuzzification

Membership functions can be accommodated by using the essential characteristic of
inductive reasoning. The induction is performed by the entropy minimization princi-
ple [9]. A key goal of entropy minimization analysis is to determine the quantity of

 Key Factors Influencing Worm Infection in Enterprise Networks 59

information in a given data set. The entropy of a probability distribution is a measure
of the uncertainty of the distribution. To employ the entropy minimization for gener-
ating membership functions of inputs, it is based on a partitioning or analog screen-
ing. It draws a threshold line between two classes of sample data as in Figure 2. This
classifies the samples while minimizing the entropy for an optimum partitioning. We
select a threshold value x in the range between x B1B and x B2B. This divides the range into
two regions, [xB1B, x] and [x, xB2B] or p and q, respectively.

Fig. 2. Basic concept of entropy minimization

The entropy for a given value of x is

() () () () ()xSxqxSxpxS qp +=

(5)

where

() () () () ()[]xpxpxpxpxS p 2211 lnln +−=

(6)

() () () () ()[]xqxqxqxqxSq 2211 lnln +−=

(7)

and where
p BkB(x) and q BkB(x) are the conditional probabilities that the class k sample is in the re-

gion [x B1B, x B1B+x] and [x B1B+x, x B2B], respectively.
p(x) and q(x) are probabilities that all samples are in the region [x B1B, x B1B+x] and [x B1B+x,

xB2B], respectively.

p(x) + q(x) = 1

We calculate entropy estimates of p BkB(x), qBkB(x), p(x), and q(x), as follows:

() ()
() 1

1

+
+

=
xn

xn
xp k

k

(8)

() ()
() 1

1

+
+

=
xN

xN
xq k

k

(9)

()

n

xn
xp

)(=

(10)

() ()xpxq −=1 (11)

60 U. Kanlayasiri and S. Sanguanpong

where
n BkB(x) is the number of class k samples in [x B1B, x B1B+x]
n(x) is the total number of samples in [x B1B, x B1B+x]
NBkB(x) is the number of class k samples in [x B1B+x, x B2B]
N(x) is the total number of samples in [x B1B+x, x B2B]
n is the total number of samples in [x B1B, x B2B]
The value of x in the interval [x B1B, xB2B] that gives the minimum entropy is chosen as

the optimum threshold value. This x divides the interval [x B1B, xB2B] into two sub-
intervals. In the next sequence we conduct the segmentation again, on each of the sub-
intervals; this process will determine secondary threshold values. The same procedure
is applied to calculate these secondary threshold values. Fuzzy sets of inputs are de-
fined by triangular shapes with these optimum threshold values.

4.2 Inference

A rule base is a set of production rules that are expressed as follows.

• Rule 1: If (xB1B is A P

1
BP1B) and (xB2B is A P

1
BP2B) and ... and (xBwB is A P

1
BPwB), then y is B P

1
P

• Rule 2: If (xB1B is A P

2
BP1B) and (xB2B is A P

2
BP2B) and ... and (xBwB is A P

2
BPwB), then y is B P

2
P ...

• Rule z: If (x B1B is A P

z
BP1B) and (xB2B is A P

z
BP2B) and ... and (xBwB is A P

z
BPwB), then y is B P

z
P

Here, xBjB (1 j w) are input variables, y is an output variable, and A P

i
BPjB and B P

i
P (1 i z)

are fuzzy sets that are characterized by membership functions. The numbers of input
and output variables are three and one, respectively. Total 27 production rules are
generated by expert experiences. The example of rule set is described in table 1.

Table 1. The example of rule set

O H T D
Low Low Low Normal
Low Low Medium Normal
Low Low High Normal
High Medium High Critical

4.3 Defuzzification

Fuzzy decision estimates worm damage in the fuzzy set {Normal, Critical}. In addi-
tion, these are defuzzified to numerical values (the number of infected hosts) as
shown in Figure 3. In these graphs, the Z-axis values are the fraction of infected hosts.
The values on X-axis and Y-axis represent (1) H and T in Figure 3(a), (2) O and T in
Figure 3(b), and (3) O and H in Figure 3(c). Comparison of the three graphs for a
given the maximum value (1.0) of O, H, and T shows the effect on worm damage.
These surfaces show that the factors have different effects on the fraction of infected
hosts over a broad range of values.

 Key Factors Influencing Worm Infection in Enterprise Networks 61

(a) O = 1.0

 (b) H = 1.0 (c) T = 1.0

Fig. 3. The surfaces of worm damages

5 Experiments

The test environment consists of a class C heterogeneous IP network subdivided into
three wired subnets and one wireless subnet. There are 200 hosts of desktop com-
puters and laptops, running a mixture of Windows NT, Windows 2000, Windows XP,
Solaris, and Linux operating systems. In this network, a router connects the four sub-
nets with 6 Ethernet switches and 2 IEEE 802.11b wireless access points. The band-
width of the core network is 100 Mbps.

The experiments aim to study the full infection condition, to investigate the useful-
ness of factors, and to evaluate the ability of the model to predict the worm damage.
Blaster and Sasser, which attack the default configuration of desktop computers in
enterprise networks and require no user intervention, are selected. Code Red and
Slammer are not chosen because they target server application and attack the optional
component of application. Nimda was not selected since it requires user intervention
for some modes of infection, hence its behavior is difficult to simulate.

Two variants of Blaster and two variants of Sasser randomly attack the test net-
work. The infection was performed for 192 different test configurations that are the
combination of different values of three factors: O, H, and T. The openness value is
varied by NAT for computers in subnets. The homogeneity is the density of hosts
running Windows family. Finally, the configuration of file transfer and file sharing
service is used to represent trust conditions.

During worm execution, the number of infected computers is calculated at the av-
erage time of full infection condition (as described in the Section 5.1) for each test

Z
X

Y

62 U. Kanlayasiri and S. Sanguanpong

configuration. The fraction of infected nodes is translated into two classes: Normal (D
< 0.3) and Critical (D 0.3). The damage threshold is the condition defined by the
organization; here, we use 0.3 for our test network. Total 1,728 data have been col-
lected and among 864 are used for generating membership functions and another 864
are for evaluating the performance of the prediction.

There are two main reasons that we perform real attacks rather than simulation.
Firstly, the real attack can provide the conditions of practical configuration setup,
effect of environmental factors, and stochastic behaviors of attacks. The other reason
is that it is reasonable to setup host populations in the real networks. One class C
network can represent the actual address space of small or medium enterprise net-
work. We can directly observe the consequence of attack in a real manner.

5.1 Full Infection Condition

We study the full infection condition of real attacks in enterprise networks. From our
assumption, computers in the networks are not all infected. We assume that partial
hosts are protected from attacks by some factors. To prove this assumption, worms
were released in two networks of 200 hosts: real network and ideal network. The first
setup is a network with the configuration of factors O, H, and T. The later is a net-
work without the configuration of these factors. As can be seen from Figure 4, the full
infection is influenced by the factors O, H, and T. The experiments show that worms
did not infect almost all populations as concluded in [1].

Again, from Figure 4, we can imply that the number of infected hosts can be calcu-
lated at the time of zero increase of infection. The time values are different in each
test case. For example, we can report the number of infected hosts of the real network
at the time of 19. In this paper, the experiments use this concept to define time values
for calculating the number of infected hosts.

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25
time

fr
ac

ti
o

n
 o

f
in

fe
ct

io
n

ideal netw ork

real netw ork

Fig. 4. Full infection condition

5.2 Usefulness of Factors

In general, there is no exact answer to the question of which factors are optimal for
damage prediction. It is believed that the factors that influence the worm infection

 Key Factors Influencing Worm Infection in Enterprise Networks 63

significantly can be used to predict the worm damage. To observe the effect of single
variable to the infection, Figure 5 shows the number of infected hosts (Y-axis) as a
function of one variable when the other two are held fixed. As can be seen, the
number of infected hosts increases as the factor values increases. This means that the
proposed factors effect to the number of infected hosts significantly and therefore can
be used to predict the worm damage.

We also consider the factors that are useful to classify the worm damage into two
classes. Actually, we investigate Receiver Operating Characteristics (ROC) curve that
presents the variation of true positives (Y-axis) according to the change of false posi-
tives (X-axis). Figure 6 shows the ROC curves with respect to the different damage
threshold of classification. Several thresholds are considers: 0.3, 0.4, 0.5, and 0.6.

(a) openness

 (b) homogeneity (c) trust

Fig. 5. Variation of worm damage according to openness, homogeneity, and trust

64 U. Kanlayasiri and S. Sanguanpong

 (a) 0.3 (b) 0.4

 (c) 0.5 (d) 0.6

Fig. 6. Factor effect of classification with the change of damage threshold

 (a) two factors (b) three factors

Fig. 7. Combination of factors with the damage threshold 0.3

 Key Factors Influencing Worm Infection in Enterprise Networks 65

The ROC curve determines that the factor is effective if its curve draws above the
no discrimination line. In addition, we can compare the significance of factors for
binary classification by comparing the area under ROC curve. The greater area the
more effective factor for classification. As can be seen in Figure 6, most factors are
above the no discrimination line. Homogeneity is likely the most significant factor in
classification for all damage thresholds in this study.

Figure 7 shows ROC curves of combination of factors with the damage threshold 0.3.
Figure 7(a) shows ROC curves of combination O+H, O+T, and H+T. Figure 7(b) shows
ROC curve of combination O+H+T. As can be seen, combination of factors produces
more effective in classification than the single factor as shown in Figure 6. Here, O+H
and O+H+T are the effective combinations of factors for classification in this study.

5.3 Performance of Prediction

The experiments are conducted with different population sizes and damage thresh-
olds. Table 2 shows the prediction rate (true-positive rate) and false-positive error rate
for 200 hosts of heterogeneous networks with the damage thresholds of 0.3, 0.4, 0.5,
and 0.6. The outputs of prediction are Normal and Critical. As can be seen, the predic-
tion rate is 100% for all threshold cases. The greater threshold does not guarantee the
low false-positive error rate because it can be worse than the smaller threshold.

Table 2. The prediction rate and false-positive error rate with test data

Damage Threshold 0.3 0.4 0.5 0.6
Prediction rate 100% 100% 100% 100%
False-positive error rate 4.68% 3.12% 1.56% 3.12%

Table 3. Prediction accuracy for different network sizes measured by RMSE (MAE)

Number of nodes 100 150 200
Wired networks 0.101 (0.087) 0.100 (0.083) 0.097 (0.083)
Wireless networks 0.095 (0.084) 0.098 (0.084) 0.107 (0.089)
Heterogeneous networks 0.106 (0.088) 0.097 (0.081) 0.106 (0.089)

From the outputs of prediction (Normal and Critical), the model translates the out-
put to the number of infected hosts. Therefore, we can analyze the performance of
prediction by comparing the number of infected hosts from prediction to the real in-
fection. The prediction accuracy of the model is measured by the root mean squared
error (RMSE) and the mean absolute error (MAE).

RMSE is the most commonly used measure of accuracy of prediction. If this num-
ber is significantly greater than MAE, it means that there are test cases in which the
prediction error is significantly greater than the average error. MAE is the average of
the difference between predicted and actual value in all test cases; it is the average
prediction error. Table 3 shows that there is no significant difference in the prediction
accuracy for the three network architectures with the damage threshold 0.3. The
RMSE in all cases is about 0.1. We can observe that the network size does not have
much effect on prediction accuracy, for the range of networks used in this study.

66 U. Kanlayasiri and S. Sanguanpong

6 Concluding Remarks

This paper analyzes the key factors that influence the worm damage and propose a
new model to estimating the worm damage utilizing these key factors. By employing
fuzzy decision, the model uses inductive reasoning in determining membership func-
tions. Experiments using real worms on a variety of test configurations were used to
compare predicted and test results. The experimental results show that the selected
parameters are strongly correlated with actual infection rates, and the proposed model
produces accurate estimates. These results suggest that this model represents a viable
approach for damage prediction of the worm class that targets desktop computers in
organization. Future work will be aimed at finding more sophisticated techniques of
integrating soft computing and hard computing to predict worm damage, as well as
evaluate the system with larger data sets and by simulation.

Acknowledgement

The authors would like to thank Yuen Poovarawan, James Brucker, Pirawat Watan-
apongse, Yodyium Tipsuwan, and anonymous referees for valuable comments to
improve the quality of the paper.

References

1. Staniford, S., Paxon, V., Weaver, N.: How to 0wn the Internet in Your Spare Time. Pro-
ceedings of the 11P

th
P USENIX Security Symposium (2002) 149-167

2. Moore, D., Shannon, C.: Code-Red: a Case Study on the Spread and Victims of an Internet
Worm. Proceedings of the ACM SICGOMM Internet Measurement Workshop (2002)
273-284

3. Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet Quarantine: Requirements for
Containing Self-Propagating Code. Proceedings of the IEEE INFOCOM Conference
(2003) 1901-1910

4. Moore, D., Paxon, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: The Spread of
the Sapphire/Slammer Worm. CAIDA (2003)

5. CERT/CC Advisory: Nimda worm. CA-2001-26, CERT (2001)
6. CERT/CC Advisory: W32/Blaster worm. CA-2003-20, CERT (2003)
7. Jang, J. R.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, NJ (1997)
8. Timothy, J. R.: Fuzzy Logic With Engineering Applications. McGRAW-HILL, Singapore

(1997)
9. Kim, C. J.: An Algorithmic Approach for Fuzzy Inference. IEEE Transaction on Fuzzy

Systems 5(4) (1997) 585-598
10. Toth, T., Kruegel, C.: Connection-history Based Anomaly Detection. Proceedings of the

IEEE Work shop on Information Assurance and Security (2002) 30-35
11. Williamson, M.: Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile

Code. HP Laboratories Bristol, Report No. HPL-2002-172 (2002)
12. Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt, K., Rowe, J., Stani-

ford Chen, S., Yip, R., Zerkle, D.: The Design of GrIDS: A Graph-Based Intrusion Detec-
tion System. Computer Science Dept., UC Davis, Report No.CSE-99-2 (1999)

 Key Factors Influencing Worm Infection in Enterprise Networks 67

13. Kephart, J. O., White, R. S.: Measuring and Modeling Computer Virus Prevalence. Pro-
ceedings of the IEEE Symposium on Security and Privacy (1993) 2-14

14. Eustice, K., Kleinrock, L., Markstrum, S., Popek, G., Ramakrishna, V., Reiher, P.: Secur-
ing Nomads: The Case for Quarantine, Examination and Decontamination. Proceedings of
the ACM New Security Paradigms Workshop (2004) 123-128

15. Kephart, J. O., White, R. S.: Directed-graph Epidemiological Models of Computer Virus
Prevalence. Proceedings of the IEEE Symposium on Security and Privacy (1993) 343-359

16. Zou, C. C., Gong, W., Towsley, D.: Code Red Worm Propagation Modeling and Analysis.
Proceedings of the ACM CCS’02 (2002) 138-147

17. Chen, Z., Gao, L., Kwiat, K.: Modeling the Spread of Active Worms. Proceedings of the
IEEE Symposium on Security and Privacy (2003) 1890-1900

18. Ellis, D.: Worm Anatomy and Model. Proceedings of the ACM Worm’03 (2003) 42-50
19. Kenzle, D. M., Elder, M. C.: Recent Worms: A Survey and Trends. Proceedings of the

ACM Worm’03 (2003) 1-10
20. Wegner, A., Dubendorfer, T., Plattner, B., Hiestand, R.: Experiences with Worm Propaga-

tion Simulations. Proceedings of the ACM Worm’03 (2003) 34-41
21. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A Taxonomy of Computer

Worms. Proceedings of the ACM Worm’03 (2003) 11-18
22. Wang, C., Knight, J., Elder, M.: On computer viral infection and the effect of immuniza-

tion. Proceedings of the 16th Annual Computer Security Applications Conference (2000)
246-256

Evaluation of the Unified Modeling Language for
Security Requirements Analysis�

Marife G. Ontua and Susan Pancho-Festin

Department of Computer Science, University of the Philippines,
Diliman, Quezon City 1101, Philippines

marife.ontua@up.edu.ph, susan.pancho@up.edu.ph

Abstract. Security protocols can be difficult to specify and analyze.
These difficulties motivate the need for models that will support the
development of secure systems from the design to the implementation
stages. We used the Unified Modeling Language (UML), an industry
standard in object-oriented systems modeling, to express security re-
quirements. We also developed an application, the UML Analyzer, to
help identify possible vulnerabilities in the modeled protocol. This was
achieved by checking the XML Meta-data Interchange (XMI) files gen-
erated from the UML diagrams. When compared with other analyses of
IKE, our results indicate that UML diagrams and XMI files offer promis-
ing possibilities in the modeling and analysis of security protocols.

1 Introduction

Security protocols can be difficult to specify and analyze, particularly for devel-
opers with very little background on formal methods. These difficulties motivate
the need for approaches that will support the development of secure systems
from the design to the implementation stages without being inaccessible to sys-
tem developers. We investigate the use of the Unified Modeling Language (UML)
to describe and analyze security protocols. We chose UML for its accessibility to
system developers. We used a free UML tool [1] which offers the facility of gener-
ating XML Meta-data Interchange (XMI) files from the UML protocol diagrams.
These XMI files were utilized in the analysis of the security protocol modeled.
We chose to model the Internet Key Exchange (IKE) [2] due to the availability
of other analyses for this protocol with which we can compare our findings. Our
aim was to investigate UML’s capacity for expressing security protocol features.

The paper is organized as follows. Section 2 outlines related work, while Sec-
tion 3 describes how we have utilized UML and XMI in the description and
analysis of IKE. In Section 4, we discuss our findings and compare them with
previous analyses of IKE. Section 5 summarizes our results and outlines our
recommendations for future work.
� Support for this research was provided by the University of the Philippines and the

University of the Philippines Engineering Research and Development Foundation
Inc.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 68–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Evaluation of the UML for Security Requirements Analysis 69

2 Related Work

We propose to utilize the Unified Modeling Language (UML) [3] in the expression
and analysis of the Internet Key Exchange (IKE) [2] protocol. We briefly describe
UML and the diagrams available within the modeling language. We also describe
IKE and the modes available within the protocol. Previous work has applied
UML for protocol specification and/or analysis (e.g., [4, 5, 6, 7]) but we have yet
to find work which compares results of a UML-based specification and analysis
with results from other methods.

2.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) [3] defines a meta-model and provides
a standard for visual models. It has four views of the software development
process and UML diagrams are grouped into these views. However, UML does
not prescribe the use of any specific modeling process in the application of these
diagrams.

1. Use Case View. The Use case view has one diagram, the Use Case diagram.
It describes the relationship between actors and use cases, which is a set of
situations describing an interaction between a user and a system.

2. Logical View. Logical view models every aspect of the software solution.
It has six diagrams namely Class, Object, Activity, Statechart, Sequence, and
Collaboration diagrams.
– The Class Diagram models class structure and contents.
– The Object Diagram models objects and their attributes. It comple-

ments class diagrams.
– The Activity Diagram illustrate the work flow behavior of the system.

It allows modeling of concurrent and synchronized processes or activities.
– The Statechart Diagram describes the life of an object by viewing it

in terms of state changes, which are triggered by events.
– The Sequence Diagram models interaction between objects. It is com-

posed of objects and messages that are mapped into timelines.
– The Collaboration Diagram is an alternative form of interaction

diagram.
3. Component View. The Component Diagram models the physical imple-

mentation of the software. It defines software modules and their relation-
ships, which are referred to as dependencies.

4. Deployment View. The Deployment Diagram describes the physical re-
lationship between software and hardware. It provides a static view of the
implementation environment.

2.2 UML and Computer Security

Devanbu and Stubblebine suggest unifying security with software engineering [8].
Several efforts have applied UML to security. In [9], the authors present Se-
cureUML to model role-based access control. In a different application, Jürgens

70 M.G. Ontua and S. Pancho-Festin

[10] developed UMLsec and showed how UML can be used to express security
requirements such as confidentiality and integrity. In this paper, we focus on the
UMLsec approach.

UML Diagrams. Jürgens [10] showed how four UML diagrams can be used to
reflect security requirements. The first diagram is the Class diagram, which is a
set of classes and a set of dependencies. The second diagram is the Statechart
diagram where an object is said to preserve security if an output with low level
security does not depend on an input value with a high level security or when
leak of information is prevented. The third diagram is the Sequence diagram,
which describes the interaction of objects via message exchange. Finally, to define
the physical architecture of the design, Deployment diagrams can be used to
ensure that the physical layer meets security requirements on communication
links between different components.

In [6], two additional UML diagrams were used to express security require-
ments. One was the Use Case diagram, which describes typical interactions be-
tween different components of a computer system and the other diagram was
the Activity diagram . A security requirement specified in the Use Case diagram
is said to be achieved if processes included in the Activity diagram show that it
has been satisfied when the final state has been reached.

UMLsec. To further support the use of UML as a tool in developing secure
systems, UMLsec, an extension of UML was developed. In [7], stereotypes, tagged
values and constraints, which are UML extension mechanisms, were used to
represent common security requirements. Some of these requirements were fair
exchange, secrecy or confidentiality and secure information flow.

Other work which used UML to express security requirements are:

– UMLsec and CEPS. In [4], UMLsec was used to model and investigate a
security-critical part of the Common Electronic Purse Specification (CEPS).

– UML and Java Security. In [5], UML was was used to specify access
control mechanisms provided by Java.

– UML and CORBA. UML was also used to model Common Object Re-
quest Broker Architecture (CORBA) Security [11].

2.3 Internet Key Exchange (IKE)

The Internet Key Exchange (IKE) [2] is a hybrid protocol that allows for the
establishment of security associations. It is a key management protocol used
in conjunction with IPSec [2]. IKE has two methods used in establishing an
authenticated key exchange and these are: Main Mode and Aggressive Mode. In
Main mode, the first two messages negotiate the policy, the next two exchange
Diffie-Hellman public values and ancillary data such as nonces, and the last
two messages authenticate the Diffie-Hellman exchange. On the other hand,
in the Aggressive mode, the first two messages negotiate the policy, exchange
Diffie-Hellman public values and ancillary data. Authentication of the responder

Evaluation of the UML for Security Requirements Analysis 71

also takes place in the second message and the third message authenticates the
initiator and provides a proof of participation in the exchange [2].

Main mode and aggressive mode operate in one of the two phases in IKE.
Phase I is where two ISAKMP [12] peers establish a secure authenticated channel
to communicate while Phase 2 is where security associations are negotiated on
behalf of security services that need key material or parameter negotiation.

Four different authentication methods are allowed. These are:

1. Pre-Shared Key
2. Public Key Signature/Digital Signatures
3. Public Key Encryption
4. Revised Public Key Encryption

3 Methodology

We used UML to model the IKE protocol, considering the different modes pos-
sible. Resulting models were saved in XMI format and were later converted to
XML files that were analyzed by our application to identify possible vulnerabil-
ities in the protocol.

3.1 Modeling with Poseidon for UML

IKE [2] was modeled using Gentleware’s Poseidon for UML tool [1]. Sequence
diagrams were used since they best describe the interaction between principals
in a protocol by specifying the messages passed between them. To model IKE
using Poseidon, the object and stimuli diagram elements were used.

Objects. Objects are elements responsible for sending and receiving messages.
In protocols, these are the principals involved. To identify the principals,
one will simply enter a name under the properties of an object. For example,

Fig. 1. The Object Diagram Element

72 M.G. Ontua and S. Pancho-Festin

Fig. 2. The CallAction Properties

in (Figure 1), specifying Object_2 under the name property would identify the
object as object_2.

Stimuli. In Poseidon’s sequence diagram, messages are referred to as stimuli and
it can either be a call, send or return stimuli. Call stimuli represent synchronous
messages while send stimuli demonstrate asynchronous messages. On the other
hand, return stimuli correspond to return statements of Call stimuli.

A stimulus can be connected with any operation or method provided by the
receiving object. This can be done by connecting the stimulus with an action
(DispatchAction) that will call the operation (CallAction). In the diagram, this
can be achieved by opening the DispatchAction property of the stimulus and
provide the formula of the operation in the Expression property of the CallAction
(Figure 2). A CallAction’s name can also be provided.

3.2 Analyzing the UML Diagram

Suppose we have a simplified protocol wherein the principals involved are A, B
and a trusted server S that will be responsible for generating a session key. The
aim of the protocol is for A and B to know the session key Kab. The session key
should be known only to A, B and server S.

Using UML’s sequence diagram, we can model the protocol above as shown
in Figure 3. With this diagram and the properties of the diagram elements, one
can visually check whether potential flaws in the protocol exist. For instance,
notice that Msg 1 has no stereotype attached to it. This implies that Stimulus
A,B has been sent in the clear and it’s possible for an intruder to manipulate
the message, i.e. replace “B” in (A,B) with the intruder’s identity.

Other problems can be identified from the diagram. To assist the analyst, a
program, which will be referred to as the UML Analyzer, has been developed to
determine possible threats in a protocol. For the UML diagram to be processed,
it has to be exported to an XMI file, which will be transformed by the pro-
gram to an XML file using XSLT.1 The transformation will only consider parts
of the UML metamodel that are deemed as necessary in checking the model.
1 XSLT [13] is a language used to transform XML documents into other XML docu-

ments.

Evaluation of the UML for Security Requirements Analysis 73

Fig. 3. Simple Protocol Model

The resulting XML file will then be used by the application to detect potential
vulnerabilities in the protocol being modeled.

With Document Object Modeling (DOM) as the parser, information on the
elements and its attributes are stored in hash tables and linked lists. After pars-
ing the XML file, the UML Analyzer will check the parameters of the called
operations (CallAction). That is, it will identify whether values used in the cal-
culation of the CallAction originate from messages (Stimuli) that were sent in
clear. If the message’s stereotype is encrypted then confidentiality and integrity
of information exchanged between principals is assumed to exist. That is, unau-
thorized leak of information and unauthorized modification of information is
prevented.

When no stereotype has been defined for a Stimulus, and a CallAction has
parameters coming from this message, then the latter is considered as a source
of threat in the protocol and the Stimulus from which the parameter origi-
nated will be considered as the reason why the CallAction is considered a
threat.

On the other hand, if at least one of the CallAction’s parameters, as defined in
its expression property in the diagram, comes from a stimulus, or from another
CallAction that is considered as suspect then the CallAction is also considered
as suspect. If its arguments are not found in any of the stimuli and other CallAc-
tions, its state cannot be determined. Just like the Stimulus, a list of possible
reasons why it became suspect will be generated.

74 M.G. Ontua and S. Pancho-Festin

The proposed use of UML to check protocols is not intended to dispense with
human inspection. The tool is there to help the analyst by pointing out where
flaws in the protocol are likely to exist.

4 Results and Discussion

Four different authentication methods can be used in Phase 1 of the IKE pro-
tocol. With two types of exchanges namely Main and Aggressive Modes, a total
of eight UML diagrams were modeled in UML. Each combination was modeled
in one diagram to reflect the continuity in the flow of the protocol. Messages
are represented by a Stimulus and internal computation of values or any secret
material are represented by a CallAction. XMI files were generated for these
models and were analyzed using the UML Analyzer program.

The UML Analyzer considers calculated values as something that is vital in
the protocol. That is, it assumes that these values can either be secret values
that should be known only to the principals in the protocol, values to be used
in the derivation of secret materials or values to be used in the generation of
keys. With this assumption, the UML Analyzer checks whether derivation of
these computed values involves parameters that originate from messages that
were sent in clear. If it does, then these values are regarded as probable sources
of problems in the protocol. Messages that were sent in clear and containing
some of the computed value’s parameters are considered as sources of threat for
that computed value.

4.1 Sample Result – IKE Using PreShared Key

As an example, for the main mode of the IKE protocol, the result indicates that
eight calculated values may cause problems in the protocol. These values and
their possible sources of threat are as follows:

1. SKEYID = prf(pre-shared key, Ni | Nr)
– Sources

• Source 1 = Message : HDR,g^xr,Nr
• Source 2 = Message : HDR,g^xi,Ni
• Source 3 = Message : HDR*, HASH1, SA, Ni, (g^xi), (IDui, IDur)

2. HASH_I = prf(SKEYID, g^xi | g^xr | CKY-I | CKY-R | SA | IDii)
HASH_R = prf(SKEYID, g^xr | g^xi | CKY-R | CKY-I | SA | IDir)

– Sources
• Source 1 = Message : HDR,g^xr,Nr
• Source 2 = Message : HDR,SA
• Source 3 = Message : HDR,g^xi,Ni
• Source 4 = Message : HDR*, HASH1, sA, Ni, (g^xi), (IDui, IDur)
• Source 5 = Computed Value : SKEYID = prf(pre-shared key, Ni |

Nr)

Evaluation of the UML for Security Requirements Analysis 75

3. SKEYID_d = prf(SKEYID, g^xy |CKY-I | CKY-R | 0)
SKEYID_a = prf(SKEYID, SKEYID_d, g^xy |CKY-I | CKY-R | 1)
SKEYID_e = prf(SKEYID, SKEYID_a, g^xy |CKY-I | CKY-R | 2)

– Sources
• Source 1 = Computed value: SKEYID = prf(pre-shared key, Ni |

Nr)

4. HASH1 = prf(SKEYID_a, M-ID | SA | Ni [g^xi] [| IDui | IDur])
– Sources

• Source 1= Message : HDR,SA
• Source 2= Message : HDR,g^xi,Ni
• Source 3= Message : HDR*, HASH1, SA, Ni, (g^xi), (IDui, IDur)
• Source 4= Computed Value : SKEYID = prf(pre-shared key, Ni |

Nr)
5. HASH2 = prf(SKEYID_a, M-ID | Ni | SA | Nr [g^xr] [| IDui | IDur])

– Sources
• Source 1= Message : HDR,g^xr,Nr
• Source 2= Message : HDR,SA
• Source 3= Message : HDR,g^xi,Ni
• Source 4= Message : HDR*, HASH1, SA, Ni, (g^xi), (IDui, IDur)
• Source 5= Computed Value : SKEYID = prf(pre-shared key, Ni |

Nr)

The first value that is considered to cause a problem in the protocol is
SKEYID. In its derivation, it made use of a pre-shared key and nonces from
the initiator and responder. Two messages containing the nonces were sent un-
encrypted before the calculation of SKEYID took place. This means, that it is
possible for a third party to modify the values of the nonces before sending it
to the desired party. The intruder may not be able to compute for SKEYID due
to the absence of the pre-shared key. However, the initiator and responder may
have different values for SKEYID. Source 3 of SKEYID is not a valid source of
threat since this message was sent after the calculation of SKEYID took place.

Problems encountered with SKEYID have a cascading effect since it was used
in the derivation of other values in the protocol. These values include:

1. HASH_I
2. HASH_R
3. SKEYID_d
4. SKEYID_e
5. SKEYID_a

HASH_I and HASH_R are used for authenticating the initiator and responder.
If both parties have arrived at different values for SKEYID, then authentication
will fail and denial of service may occur; moreover, the succeeding exchange of
messages will not occur. Source 4 for both values is deemed invalid since the
message was sent after HASH_I (HASH_R) was computed .

76 M.G. Ontua and S. Pancho-Festin

Values of SKEYID_d, SKEYID_e and SKEYID_a keying materials may also
be compromised if the value for SKEYID is doubtful. However, since the compu-
tation of these keys involves g^xy, which is a Diffie-Hellman shared secret, then
it would be difficult for a third party to identify the values for these keys. If
authentication has been successful, then the exchange of messages between the
initiator and responder can continue without being compromised.

It was also noted that, in the computation for HASH1 and HASH2, the mes-
sage HDR, SA was flagged as a potential vulnerability source. This means that
HASH1 (HASH2) relies on a value (SA) that is sent in clear and is easily modi-
fiable by an attacker.

Finally, HASH1 and HASH2 may be compromised since most of the values
used in its derivation came from messages that were sent in clear or unencrypted.
But since it is difficult for a third party to identify the value of SKEYID_a then
it is also difficult to identify the values of HASH1 and HASH2.

4.2 False Positives

The current implementation of the program produces many false positives since
it does not yet use the details regarding the sequencing of messages. For example,
in the given sample result, SKEYID was flagged to be a potential threat since
two parameters used in deriving it (Ni and Nr) were detected to have been sent
in the clear in several messages. These messages were enumerated as:

– Source 1 = Message : HDR,g^xr,Nr
– Source 2 = Message : HDR,g^xi,Ni
– Source 3 = Message : HDR*, HASH1, SA, Ni, (g^xi), (IDui, IDur)

Of these three flagged sources, only the first two may be considered as
valid threat sources since these messages were sent prior to the computation
of SKEYID. The last source is a false positive since this message was sent after
SKEYID has already been computed.

4.3 Summary of Flaws Identified by the Analyzer

The UML Analyzer generated eight files one for each mode (Main, Aggressive)
and authentication method pair, namely:

1. Pre-Shared Key, Main Mode
2. Pre-Shared Key, Aggressive Mode
3. Public Key Signature, Main Mode
4. Public Key Signature, Aggressive Mode
5. Public Key Encryption, Main Mode
6. Public Key Encryption, Aggressive Mode
7. Revised Public Key Encryption, Main Mode
8. Revised Public Key Encryption, Aggressive Mode

Evaluation of the UML for Security Requirements Analysis 77

The potential vulnerabilities identified in IKE can be summarized as follows:

1. Man-in-the-middle attack leading to modification of messages. This may
include messages containing parameters used in the subsequent derivation
of secret values or any keying material.

2. Possibility for an intruder to dictate what security association will be used.
This was detected in all result files since the security association (SA) was
flagged to have been sent in clear.

3. Denial of service attack. The potential for denial of service stems from the
ability of an attacker to subvert attempts to either authenticate or establish
a security association by modifying parameters sent in messages.

4.4 Comparison of Analyses

Two other analyses of IKE, namely that of Meadows [14] and Zhou [15] were
consulted after analyzing IKE with the use of UML diagrams. The results of the
analysis results were compared to measure UML’s capability in specifying secu-
rity requirements. Consultation of the other two analyses was performed after
the UML Analyzer was developed and applied to avoid bias in the generation of
the results.

In Meadow’s analysis, the NRL Protocol Analyzer, which is a special purpose
formal methods tool, was used to evaluate IKE. On the other hand, no tool
was involved in Zhou’s analysis. The flaw was discovered when the protocol was
inspected by the author.

Three main problems were also identified by Meadows [14] and these were:

1. Ambiguous specification of identities resulting to a man-in-the-
middle attack. In Phase I of the protocol, before the identities are ex-
changed, only the IP addresses can be used to identify the peers involved.
With this, it is possible for an intruder to replace the IP address of say peer
B with its own address and convince peer A that peer B is linked to the
modified IP address.

2. Penultimate authentication failure leading to a fail-stop situation in a
protocol or inability of the protocol to proceed.

3. Denial of service without the knowledge of the principal that such
attack has occurred. In Phase II of the protocol, inclusion of identification
information in the exchange of messages is optional. With this, receiver B of
the message can use the IP address of sender A of the message as index to
the encryption key. In this situation, B cannot distinguish messages coming
from A or B. Therefore, an intruder can substitute A’s IP address for B’s,
ending with B sharing a key with itself. B has been denied sharing a key
with A without knowing it.

Items one and two are from the analysis of IKE’s phase one while item three
is from phase II of IKE. On the other hand, the flaw that was detected in [15]
was on the possibility for an intruder to dictate what Security Association (SA)
will be used. This will occur when an intruder will intercept the SA negotiation
between the initiator and responder.

78 M.G. Ontua and S. Pancho-Festin

Due to some limitations, analysis of IKE using the NRL Protocol Analyzer
was conducted in phases, with some adjustments to the tool [14]. Part of the
motivation for the NRL study was to determine NRL’s applicability in the anal-
ysis of a protocol such as IKE. With the UML Analyzer, each possible mode
and authentication method pair was depicted with a UML sequence diagram.
From these diagrams, it identified that a man-in-the-middle attack is possible
for some messages that were sent in clear. This leads to modification of some
the parameters used later for computed values. Nevertheless, unlike the NRL
Protocol Analyzer that had identified ambiguous specification of identities as
source of the attack, the UML Analyzer only indicated what messages were sent
in clear that could have contributed to the attack.

The second problem identified by the UML Analyzer is the penultimate au-
thentication failure identified in [14]. Penultimate authentication in the context
of IKE requires that if B accepts a SA to have originated from A, then A must
have also accepted the security association. Failure of this type of authentication
was identified by the UML Analyzer. It indicated that it is possible for a third
party to modify the contents of the initiator’s SA proposal without the initiator
and responder’s knowledge. With this, a responder might choose (and accept) a
proposal that was never part of the initiator’s offer.

Finally, a likely denial of service scenario was identified by the UML Ana-
lyzer. This generally stems from the use of SKEYID, utilized in the derivation
of the keys eventually used in authentication. When the value of SKEYID is
compromised, the values of the authentication keys are also compromised. The
UML Analyzer identifies parameters that an attacker can deliberately modify;
these are the parameters subsequently used in the derivation of SKEYID. An
authentication failure can occur since both the initiator and responder may end
up computing different values for SKEYID. Meadow’s analysis stated that at
the time of the research, it was impossible to model denial of service directly in
the NRL Analyzer.

5 Conclusion and Recommendations

Based on the analysis of IKE using UML and the comparison of our results with
the two other analyses, it can be said that UML can be used as a tool in analyzing
security requirements. The tool’s sequence diagrams made it easier to see the
exchanges of messages between the principals involved in the protocol including
the calculations that were done internally by the principals. Normally, one would
only assume that these calculations took place. UML’s feature in providing XMI
files for the diagrams paved the way for creating an application that would aid
the analyst in identifying potential flaws in a security design.

5.1 Future Research

In this research, Gentleware’s Poseidon UML sequence diagram was used to
model a protocol and a Java-based application (UML Analyzer) was created to

Evaluation of the UML for Security Requirements Analysis 79

analyze the diagrams generated. The UML Analyzer works on the premise that a
calculated value plays an important role in attaining the goals of confidentiality
and integrity in a protocol. That is, these values have the potential to be either
used in the derivation of keys and other secret values that have to be shared
among principals of the protocol. With this, the UML Analyzer considers a
calculated value to be a possible source of problem in the protocol if at least
one of its parameters originate from messages that were sent in clear. In the
following list, enhancements on the functionalities of the UML Analyzer and the
use of UML will be highlighted to be able to maximize the capability of using
UML to model security specifications.

1. Encryption of Messages. Stereotypes are used in UML diagrams to indi-
cate the encryption of messages. Currently, the research considers encryption
of the whole message. However, it is possible that only certain parts of the
messages are encrypted. For it to handle encryption of certain parts of the
message, other features of the UML that would be able to support this can
be looked into.

2. Consider Other Stereotypes. Aside from encrypted, other terminologies
like high can be used to indicate the message’s security level. When this is
done, it should be added in the program that stereotypes declared as such
will be treated like how the analyzer currently treats messages tagged as
encrypted.

3. Improve Pattern Matching. As mentioned, the program checks for pa-
rameters of the computed values that were sent in clear. To be able to do
this, the analyzer made use of Java’s Regex class to identify the existence of
the parameters in the messages. However, use of Regex would mean special
handling of symbols that are used in protocols or other security design. Regex
might have its own way of interpreting these symbols that might result in
the inability of the UML Analyzer to identify existence of patterns. A better
pattern matching facility can also be developed.

4. Consider Other UML Diagrams. This research only considered the se-
quence diagram. Other UML diagrams can be used as well to specify security
requirements. These diagrams have to be considered since it is possible that
the sequence diagram is not the best UML diagram that can reflect a security
protocol.

5. False Positives. The UML Analyzer currently errs on the side of caution
and has erroneously identified some items to be flaws in the protocol being
studied. Further study is needed to lessen the false positive rate.

6. Improve the GUI interface. For the application to be easier to use and
understand, it would be better to improve the GUI interface of the appli-
cation. It would also be best to have the output that contains the possible
sources of threats to be presented in the GUI itself. This way, the user can
right away see the result of the analysis.

80 M.G. Ontua and S. Pancho-Festin

References

1. Gentleware: Poseidon for UML, Community Edition version 3.1. http://www.
gentleware.com (2005)

2. Harkins, D., Carrel, D.: The Internet Key Exchange (RFC 2409). http://www.
ietf.org/rfc/rfc2409.txt (1998)

3. Unified modeling language 2.0 draft specifications. http://www.omg.org/uml/
(2003)

4. Jürjens, J.: Developing secure systems with UMLsec - from business processes to
implementation. In: Proceedings of VIS 2001, Kiel, Germany. (2001)

5. Jürjens, J.: Modelling audit security for smart-card payment schemes with UMLsec.
In: Proceedings of IFIP/SEC 2001 - 16th International Conference on Information
Security, Paris, France. (2001)

6. Jürjens, J.: Secure Java development with UML. In: Proceedings of I-NetSec 01 -
First International IFIP TC-11 WG 11.4 Working Conference on Network Security,
Leuven,Belgium. (2001)

7. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Pro-
ceedings of UML 2002 Dresden. (2002)

8. Devanbu, P., Stubblebine, S.: Software engineering for security: a roadmap. In: The
Future of Software Engineering. (2000) Special volume published in conjunction
with International Conference on Software Engineering, Limerick, Ireland.

9. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based modeling lan-
guage for model-driven security. In Jezequel, J., Hussmann, H., Cook, S., eds.:
Proceedings of the UML 2002 - 5th International Conference. Number 2460 in
Lecture Notes in Computer Science, Springer (2002)

10. Jürjens, J.: Towards development of secure systems using UMLsec. In Hußmann,
H., ed.: Fundamental Approaches to Software Engineering (FASE, 4th Interna-
tional Conference, Part of ETAPS). Volume 2029 of Lecture Notes in Computer
Science., Springer Verlag (2001) 187–200

11. Pachl, J.: UML model for CORBA security. www.omg.org/docs/security (1999)
12. Maughhan, D., Schertler, M., Schneider, M., Turner, J.: Internet Security As-

sociation and Key Management Protocol (RFC 2408). http://www.ietf.org/rfc/
rfc2408.txt (1998)

13. Consortium, W.W.W.: XSL transformations (XSLT) version 1.0.
http://www.w3.org/TR/1999/REC-xslt-19991116.html (1999)

14. Meadows, C.: Analysis of the Internet key exchange protocol using the NRL pro-
tocol analyzer. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy. (1999) 216–231

15. Zhou, J.: Fixing a security flaw in IKE protocols. Electronics Letters 35 (1999)
1072–1073

A Simple and Efficient Conference Scheme
for Mobile Communications

Wen-Shenq Juang

Department of Information Management, Shih Hsin University,
No. 1, Lane 17, Sec. 1, Muja Rd., Wenshan Chiu,

Taipei, Taiwan 116, R.O.C.
wsjuang@cc.shu.edu.tw

Abstract. By using wireless communications, conferees can join a
teleconference at any time and any place. In order to hold a secure telecon-
ference, they must share a conference key before holding the conference.
Up to date, public key cryptosystems are used in all proposed conference
key distribution schemes for protecting the privacy of conferees’ locations
during the conference. The computation cost and communication cost
of these schemes is still high. In this paper, we propose a simple and
efficient conference scheme for mobile communications. The main merits
of our scheme include: (1) conferees can share a common conference key
to hold a secure teleconference over a public channel; (2) the location of a
particular conferee is protected to prevent a tracking attack; (3) it allows
a user to join or quit a mobile teleconference dynamically; (4) only secure
one-way hash functions and symmetric key cryptosystems are used, and
the computation and communication cost is very low; (5) there needs no
passwords or shared keys table in the network center.

Keywords: Mobile communications, Conference keys, Network security,
Symmetric cryptosystems, One-way hash functions.

1 Introduction

In mobile communications, subscribers can communicate quickly and conve-
niently with others at any time and any place. To date, mobile communications
have become one of the major mediums for transmitting information. It makes
subscribers possible to use various network services, e.g. shopping, payment,
teleconference , etc., conveniently [6, 8, 9, 20]. By using wireless communications,
conferees can join a teleconference at any place. All conferees can use their mobile
units at remote locations for cooperating a board meeting, a group discussion,
or a virtual classroom. Via the nearest base station, all conferees can transmit
their messages to a mobile switching center called a network center or conference
bridge. The network center receives messages from conferees, performs proper
processing, and then sends the result to base stations. The base station then
broadcasts the result to conferees.

In order to hold a secure conference in networks, all conferees must share
a common secret key named the conference key before holding the conference.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 81–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 W.-S. Juang

Since the concept of conference key establishment was first introduced in [4],
some schemes [5, 11] about conference key distribution have been proposed.
These schemes are not suitable for implementation on mobile devices with low
computation and communication power and small amount of flash memory. To
solve this problem, Hwang and Yang proposed a conference key distribution
schemes [8] based on RSA and congruence mechanism for mobile communica-
tions. This scheme was improved by Hwang in [9] to allow a participant to join
or quit a conference dynamically. In [20], Yi et al. used the modular square
root technique [17, 19] to design a user efficient conference scheme for limited
computing power mobile devices.

In consideration of the feasibility of holding a conference in mobile communi-
cation environments, the following two major criteria are important [8, 9, 20].

C1: Low computation and communication cost: Due to the computation
power constraint and small flash memory of mobile units, they could not provide
a high bandwidth and powerful computation ability.

C2: Dynamic participation: A participant can join or quit a conference dy-
namically.

Also, wireless communications transmit messages via radio. They are more
easy to unauthorized access and eavesdropping than wireline communications.
Generally, there are three major threats in mobile communications [3, 8, 9, 20].

T1: Impersonation: An impersonator disguises himself as a legitimate mobile
subscriber and uses the permitted services for this subscriber.

T2: Eavesdropping: An eavesdropper intercepts mobile users’ conversation or
identities information.

T3: Tracking: A tracker locates the current location of an individual mobile
user.

As mentioned in [8, 9, 20], for preventing these threats in mobile communica-
tion environments, the following security criteria are important for a conference
scheme.

S1: Content privacy: Preserve the privacy of the conversation contents during
the conference.

S2: Location privacy: Preserve the privacy of conferees’ locations during the
conference.

S3: Authenticity: Prevent the fraud by ensuing that the mobile units are
authentic.

S4: Prevention of the replaying attack: The intruders can not get sensitive
data by replaying a previously intercepted message.

To satisfy the S2 security requirement, all proposed conference schemes
[8, 9, 20] in mobile communication environments are based on public-key
cryptosystems. These approaches still need a large or medium computation and
communication cost for establishing a conference.

A Simple and Efficient Conference Scheme for Mobile Communications 83

In this paper, we propose a novel conference scheme for mobile communica-
tions. Our proposed scheme can not only satisfy the above two major criteria but
also satisfy the four security criteria. By using a new concept named one-time
random indicators for preserving location privacy, no public-key cryptosystem
is used in our proposed scheme. This approach can dramatically improve the
efficiency for conference key distribution in mobile communications.

The remainder of this paper is organized as follows: In Section 2, a brief review
of related conference schemes for mobile communications is given. In Section 3,
we present our conference scheme for mobile communications. In Section 4, we
analyze the security of our scheme. In Section 5, the performance considerations
are given. Finally, a concluding remark is given in Section 6.

2 Review

Yi et al. proposed a conference scheme for mobile communications based on mod-
ular square root technique [20]. The major contribution of their scheme compared
with Hwang’s scheme [9] is to decrease the computation cost of the mobile user’s
portable device because the mobile device only needs to perform two modular
multiplication operations and some secret-key encryption and decryption opera-
tions. Since Yi et al.’s scheme is also based on public-key cryptosystems to ensure
the location privacy, the computation and communication cost of this scheme
is still medium for establishing a teleconference. In this section, we will brief
review Yi et al.’s scheme. A typical session of the scheme involves m conferees,
the certificate authority and the conference bridge. The certificate authority is
a trusted third party for issuing certificates to users. The conference bridge is
a trusted central authority for conference key distribution and updating. The
scheme consists of four subschemes: the secret key certificate issuing scheme, the
secret key establishing scheme, the conference key distribution scheme, and the
conference key updating scheme. The proposed scheme is as following.

2.1 Secret Key Certificate Issuing Scheme

The certificate authority randomly selects two distinct large primes pca and
qca where pca ≡ qca ≡ 3 (mod 4), computes nca = pca ∗ qca, publishes nca to all
participants and keeps pca and qca secret. Let IDa be the unique identification of
the participant A. The certificate authority issues a secret certificate (IDa, ia, sa)
to A, where (ia, sa) is the output of the following procedure.

1. ia = 0.
2. Compute a = h(IDa, ia), where h is a one-way function [15, 18].
3. Check if a

p−1
2 = 1(mod pca) and a

q−1
2 = 1(mod qca). If not, i = ia + 1 and

go back to step 2.
4. Compute four modular square roots of x2 = a(mod nca) and choose the

smallest square root as sa.
5. Output (ia, sa).

84 W.-S. Juang

The certificate authority then issues a smart card, e.g., the subscriber identity
module (SIM) containing the secret certificate (IDa, ia, sa) to A.

2.2 Secret Key Establishing Scheme

The aim of this scheme is to generate a shared secret key between the conference
bridge B and each conferee Ci, 1 ≤ i ≤ m. Initially, the trusted conference bridge
selects two distinct large primes pb and qb where pb ≡ qb ≡ 3 (mod 4), computes
nb = pb ∗ qb, publishes nb to all participants and keeps pb and pb secret. Let
R = 2l and 2l−1 < nb < 2l. The chairperson (C1) can initialize a conference as
follows.

Step 1: C1 chooses a random integer r1, where
√

nb < r1 < (nb/2) and computes

R1 = r2
1 ∗R−1(mod nb)

k1 = g(h(r1))
U1 = Ek1(IDB)
V1 = Ek1(t1||(ID1, i1, s1)||A1||ID2|| · · · ||IDm)

where
h one-way hash fuction;
g trivial map to the key space of a secret key cryptosystems;
Ek1 encryption of a secret key cryptosystem with key k1;
IDB identification information of the conference bridge B;
IDj identification information of the conferee Cj (j=1,2,...,m);
t1 time when the chairperson C1 sends the request to the bridge B;
A1 alias of C1;
|| string concatenation operator.
C1 then sends (R1, U1, V1) to B and keeps k1 secret.

Step 2: Upon receiving (R1, U1, V1), B extracts k1 and authenticates C1 by the
following way.

1. Compute four square roots r1, r2, r3 and r4 of x2 = R1 ∗ R(mod nb), where
R = 2l.

2. Compute four secret key candidates xi = g(h(ri)), where 1 ≤ i ≤ 4.

3. Determine which secret key candidate satisfies Dxi(U1) = IDB. The
matched one is k1.

4. Decrypt V1 with k1 to obtain t1, (ID1, i1, s1), A1, ID2, ..., IDm, check the
validity of timestamp t1, and verify whether

s2
1 = h(ID1, i1)(mod nca).

If yes, C1 is authenticated. Finally, B and C1 establish a secret key k1
for protecting communications between them. B then calls all other conferees
Cj , 2 ≤ j ≤ m, respectively.

A Simple and Efficient Conference Scheme for Mobile Communications 85

Step 3: Each conferee Cj , 2 ≤ j ≤ m, randomly chooses an integer rj , where√
nb < rj < (nb/2) and computes

Rj = r2
j ∗R−1(mod nb)

kj = g(h(rj))
Uj = Ekj (IDB)
Vj = Ekj (tj ||(IDj , ij, sj)||Aj)

where Aj is the alias of Cj . Cj then sends (Rj , Uj , Vj) to B.
Upon receiving (Rj , Uj, Vj), B extracts kj and authenticates Cj by the same

way as Step 2. Finally, the secret key kj known only to B and Cj is established.

2.3 Conference Key Distributing Scheme

The bridge B chooses a random number k as a conference key and encrypts it
with the key kj , 1 ≤ j ≤ m, respectively.

B broadcasts to all conferees Cj , 1 ≤ j ≤ m, the information (I1 = Ek(IDB),
I2 = Ek(t||L), I3 = [(A1, Ek1(k)||(A2, Ek2(k))|| · · · ||(Am, Ekm(k))]), where t is
the timestamp and L is the lifetime of the conference key k.

Upon receiving (I1, I2, I3), conferee Cj , 1 ≤ j ≤ m, looks up his alias Aj and
extracts Ekj (k) from I3. He decrypts Ekj (k) with key kj to get k, decrypt I2
with key k to obtain t, checks the validity of the timestamp t, and verifies if
Dk(I1) = IDB. If yes, k is an authenticated conference key.

When a person Cm+1 wants to join the conference, he needs to get the con-
ference key k as follows.

1. Cm+1 obtains the permission to join the conference from the chairperson C1.
2. C1 sends to the bridge B the information J = Ek1(t′||IDm+1||JOIN), where

t′ is the timestamp and IDm+1 is the identification information of Cm+1.
3. B decrypts J with key k1 to obtain t′ and IDm+1 and checks the validity of

the timestamp t′. If the timestamp is valid, B calls Cm+1.
4. Cm+1 and B establish a common secret key km+1 with the secret key estab-

lishing scheme.
5. B sends Cm+1 the message (I1 = Ek(IDB), I2 = Ek(t′′||L), I3 = (Am+1,

Ekm+1(k))), where t′′ is the timestamp and Am+1 is the alias of Cm+1.
6. Cm+1 extracts key k from I3, checks the validity as the other conferees do,

and joins the conference.

2.4 Conference Key Updating Scheme

When a conferee (not the chairperson) quits the conference, the conference key
needs to be updated. Without loss of generality, assume that conferee Cm has
quitted the conference. The conference key is updated as follows.

1. C1 sends to the bridge B the information (Q = Ek1(t′||IDm||QUIT)), where
t′ is the timestamp.

86 W.-S. Juang

2. B chooses another random number k∗ as the new conference key and broad-
casts to all remaining conferees the information (I1 = Ek∗(IDB), I2 = Ek∗

(t∗||L∗), I3 = [(A1, Ek1(k∗)||(A2, Ek2(k∗))|| · · · ||(Am−1, Ekm−1(k∗))]), where
t∗ is the timestamp and L∗ is the lifetime of the updated conference key k∗.

3. Cj , 1 ≤ j ≤ m − 1, extracts k∗ from I3 and checks authenticity according
the conference key distribution scheme.

3 Simple and Secure Conference Scheme

3.1 Notation

We first define the notation used in this section.
NC The network center.
Ci Conferee i.
NCID The unique identification of NC.
CIDi The unique identification of Ci.
α, β NC′s master secret keys, where α is for generating all shared secret

keys between NC and Ci, and β is for generating all one-time secret
keys used for encrypting conferees’ identifications.

Ek[M] Encryption of M using a symmetric encryption scheme [1, 16] with
a shared key K.

h(M) A secure one-way hash function [14, 15] applied to M .
γi The secret key, shared between Ci and NC, can only be computed

by NC, and stored in C′
is smart card after registered at NC,

where γi = h(α||CIDi).
ri,j The one-time random number chosen by NC as an indicator for

generating the one-time secret key δi,j , stored in C′
is smart card

after jth authentication of Ci with NC, and used during the
(j + 1)th authetication as C′

is alias.
δi,j The one-time secret key, computed by NC, stored in C′

is smart card
after jth authentication of Ci with NC, and used for encrypting C′

is
identification CIDi for preserving location privacy, where δi,j =
h(β||ri,j).

CA The conference acknowledgement message.
CR The conference requesting message.
CQ The conference quitting message.
CU The conference updating message.

k The conference key.
k′ The updated conference key.
L The life time of the conference key k.
L′ The updated life time of the conference key k′.
|| The conventional string concatenation operator.

3.2 The Proposed Scheme

In this section, we propose an efficient conference scheme for mobile commu-
nications. A typical session of the scheme involves conferees and the network

A Simple and Efficient Conference Scheme for Mobile Communications 87

center. We assume that the network center is a trusted central authority for
conferees registration, and conference key distribution. The proposed scheme is
as following.

Registration Phase: Assume Ci submits his identity CIDi to NC for regis-
tration. If NC accepts this request, he will perform the following steps:

Step 1: Choose a one-time random number ri,0 as an indicator for the one-time
secret key δi,0 and compute C′

is secret information γi = h(α||CIDi), δi,0 =
h(β||ri,0).

Step 2: Store CIDi, γi, ri,0 and δi,0 to the memory of a smart card and issue
this smart card, e. g., the subscriber identity module (SIM), to Ci.

Conference Key Distribution Phase: After getting the smart card from
NC, Ci can use it in secure conferences. Without loss of generality, we assume
there are m ≥ 3 conferees, Ci, 1 ≤ i ≤ m, willing to join the conference and
C1 is the chairperson to initialize the conference, and at this moment, ri,t and
δi,t are stored in C′

is smart card since Ci has used his smartcard t times. The
conference key distribution is as follows.

Step 1: C1 sends NC the message (r1,t, Eδ1,t [CID1], Eγ1 [t1, CR, (CIDi, 2 ≤ i ≤
m), h(t1||CR||(CIDi, 2 ≤ i ≤ m))]), where r1,t is the one-time random indicator
stored in C′

1s smart card and t1 is the timestamp.

Step 2: Upon receiving the message (r1,t, Eδ1,t [CID1], Eγ1 [t1, CR, (CIDi, 2 ≤
i ≤ m), h(t1||CR||(CIDi, 2 ≤ i ≤ m))]), NC first computes δ1,t = h(β||r1,t) and
then decrypts the message Eδ1,t [CID1] and records r1,t is the alias of CID1.
He then computes γ1 = h(α||CID1), decrypts the message Eγ1 [t1, CR, (CIDi, 2
≤ i ≤ m), h(t1||CR||(CIDi, 2 ≤ i ≤ m))], and then checks the validity of the
timestamp t1 and the authentication tag h(t1 ||CR||(CIDi, 2 ≤ i ≤ m)). If yes,
C1 is authentic. He then calls all other conferees Ci, 2 ≤ i ≤ m, respectively.

Step 3: Each Ci, 2 ≤ i ≤ m, sends NC the message (ri,t, Eδi,t [CIDi], Eγi [ti, CA,
h(ti||CA)]), where ri,t is the one-time random indicator stored in C′

is smart card
and ti is the timestamp.

Step 4: Upon receiving the messages (ri,t, Eδi,t [CIDi], Eγi [ti, CA, h(ti||CA)]),
2 ≤ i ≤ m, NC first computes δi,t = h(β||ri,t), 2 ≤ i ≤ m, and then decrypts
the messages Eδi,t [CIDi], 2 ≤ i ≤ m, and records ri,t, 2 ≤ i ≤ m, as the one-time
aliases of CIDi, 2 ≤ i ≤ m, respectively. He then computes γi = h(α||CIDi),
2 ≤ i ≤ m, decrypts the messages Eγi [ti, CA, h(ti||CA)], 2 ≤ i ≤ m, and then
checks the validity of the timestamps ti, 2 ≤ i ≤ m, and the authentication tags
h(ti||CA), 2 ≤ i ≤ m. If the timestamp ti and the authentication tag h(ti||CA)
are both valid, Ci is authentic. If Ci, 2 ≤ i ≤ m, are all authentic, NC broadcasts
the message (Ek[tnc, L, h(tnc||CA||L)], (ri,t, Eγi [ri,t+1, δi,t+1, k], 1 ≤ i ≤ m)), to
all conferees Ci, 1 ≤ i ≤ m, where tnc is the timestamp, k is the randomly
generated number as the conference key, L is the life time of the conference key
k, ri,t+1 is a one-time random number chosen by NC as an indicator for one-time
secret key generation, and δi,t+1 = h(β||ri,t+1).

88 W.-S. Juang

Step 5: After each Ci, 1 ≤ i ≤ m, sieving the message (Ek[tnc, L, h(tnc||CA||L)],
(ri,t, Eγi [ri,t+1, δi,t+1, k])) from the downlink channel, each Ci, 1≤ i≤m,
decrypts the message Eγi [ri,t+1, δi,t+1, k], and then decrypts Ek[tnc, L,
h(tnc||CA||L)] using the conference key k. He then checks the validity of the
timestamp tnc and the authentication tag h(tnc||CA||L). If yes, he then replaces
ri,t and δi,t with ri,t+1 and δi,t+1 in his smart card.

Now a common conference key k has been established among all conferees
and the network center. The messages of the conference conversation can be
protected by any secure symmetric cryptosystem using this conference key k.

During holding the conference, if another user Cm+1 wants to join this con-
ference, he must do the following.

Step 1’: Cm+1 requests the permission of C1 to join the conference.

Step 2’: C1 sends NC the message (r1,t, Eγ1 [t′1,CJ ,CIDm+1, h(t′1||CJ ||
CIDm+1)]), where t′1 is a timestamp.

Step 3’: Upon receiving the message (r1,t, Eγ1 [t′1,CJ ,CIDm+1, h(t′1||CJ ||
CIDm+1)]), NC first finds the real identification CID1 by using the one-
time alias r1,t, computes γ1 = h(α||CID1), decrypts the message Eγ1 [t′1, CJ,
CIDm+1, h(t′1||CJ ||CIDm+1)], and then checks the validity of timestamp t′1
and the authentication tag h(t′1||CJ ||CIDm+1). NC rejects this request if the
tag is not valid. If the tag and timestamp are both valid, he calls Cm+1.

Step 4’: Cm+1 sends NC the message (rm+1,t, Eδm+1,t [CIDm+1], Eγm+1 [tm+1,
CA, h(tm+1||CA)]), where tm+1 is the timestamp, rm+1,t is the one-time random
indicator stored in C′

m+1s smart card.

Step 5’: Upon receiving the message (rm+1,t, Eδm+1,t [CIDm+1], Eγm+1 [tm+1, CA,
h(tm+1||CA)]), NC first computes δm+1,t = h(β||rm+1,t), and then decrypts
the message Eδm+1,t [CIDm+1] and records rm+1,t is the one-time alias of
CIDm+1. He then computes γm+1 = h(α||CIDm+1), decrypts the message
Eγm+1 [tm+1, CA, h(tm+1||CA)], and then checks the validity of the timestamp
tm+1, and the authentication tag h(tm+1||CA). NC rejects C′

m+1s request if his
tag is not valid. If the tag and timestamp are both valid, NC sends Cm+1 the
message (rm+1,t, Eγm+1 [rm+1,t+1, δm+1,t+1, k], Ek[t′nc, L, h(t′nc||CA||L)]), where
t′nc is a timestamp, rm+1,t+1 is a one-time random number chosen by NC as an
indicator for one-time secret key generation, and δm+1,t+1 = h(β||rm+1,t+1).

Step 6’: After Cm+1 sieving the message (rm+1,t, Eγm+1 [rm+1,t+1, δm+1,t+1, k],
Ek[t′nc, L, h(t′nc||CA||L)]) from the downlink channel, Cm+1 decrypts the
message Eγm+1 [rm+1,t+1, δm+1,t+1, k] and then decrypts the message Ek[t′nc, L,
h(t′nc||CA ||L)] using the conference key k. He then checks the validity of the
timestamp t′nc and the authentication tag h(t′nc||CA||L). If yes, he then replaces
rm+1,t and δm+1,t with rm+1,t+1 and δm+1,t+1 in his smart card. He then can
use k as the conference key to join the conference.

Conference Key Updating Phase: When a conferee wants to quit the con-
ference, the conference key k must be updated. Without loss of generality, we

A Simple and Efficient Conference Scheme for Mobile Communications 89

assume that Cm is willing to quit the conference. The conference key is updated
as follows.

Step 1: C1 sends NC the message (r1,t, Eγ1 [t′′1 , CQ, CIDm, h(t′′1 ||CQ||CIDm)]),
where t′′1 is the timestamp.

Step 2: Upon receiving the message (r1,t, Eγ1 [t′′1 , CQ, CIDm, h(t′′1 ||CQ||CIDm)]),
NC first finds the real identification CID1 by using the one-time alias r1,t, com-
putes γ1 = h(α||CID1), decrypts the message Eγ1 [t′′1 , CQ, CIDm, h(t′′1 ||CQ||
CIDm)] and then checks the validity of the authentication tag h(t′′1 ||CQ||CIDm)
and the timestamp t′′1 . If yes, he broadcasts the remaining conferees
Ci, 1 ≤ i ≤ (m − 1), the message ((ri,t, Eγi [k′], 1 ≤ i ≤ (m −
1)), Ek′ [t′′nc, CU, L′, h(t′′nc||CU ||L′)]), where t

′′
nc is the timestamp, k′ is a random

number chosen by NC as the new conference key, L′ is the new lifetime.

Step 3: After each Ci, 1 ≤ i ≤ (m−1), sieving the message ((ri,t, Eγi [k′]), Ek′ [t′′nc,
CU, L′, h(t′′nc||CU ||L′)]), each Ci, 1 ≤ i ≤ (m− 1), decrypts the message Eγi [k′],
and then decrypts the message Ek′ [t′′nc, CU, L′, h(t′′nc||CU ||L′)] using the updated
conference key k′. He then checks the validity of the timestamp t′′nc and the
authentication tag h(t′′nc||CU ||L′). If yes, he updates the new conference key k′

and the new lifetime L′. He then can use the new conference key k′ to join the
conference.

4 Security Analysis

1. In our conference scheme, the privacy of the conversation content during
the conference is preserved since the conference conversation content is en-
crypted by a symmetric key cryptosystem with the conference key k. If Ci

has quitted the conference, he cannot get the new conference conversation
content without the updated conference key k′.

2. The privacy of conferees’ locations during the conference is preserved since
each CIDi, 1 ≤ i ≤ m, is encrypted by a one-time random secret key
δi,t = h(β||ri,t) which can only be computed by NC using the one-time
random indicator (alias) ri,t and his master secret key β. The one-time ran-
dom indicator ri,t can only be used in a single conference and will be replaced
by another one-time random indicator ri,t+1 when Ci gets the conference key
k. In the conference, Ci uses ri,t as his alias to use the medium. It is hard to
derive NC’s master secret key β from the one-time random secret key δi,t

and the one-time random indicator (alias) ri,t since NC’s master secret key
β is protected by the public secure one-way hash function h()[14, 15].

3. Differently from that the alias Ai of conferee Ci is chosen by each conferee
Ci in Yi et al.’s scheme [20], the one-time alias (indicator) ri,t of conferee
Ci is randomly generated by the network center (conference bridge) in our
proposed scheme. Our approach is more practical since the network center
can generate a unique alias for each conferee in every conference. In Yi et
al.’s scheme [20], two conferees Ci and Cj may choose two same aliases Ai

90 W.-S. Juang

and Aj in a distributed environment. It will cause more effort to handle this
situation.

4. After step 2 and 4 in the conference key distribution phase, each identifica-
tion of Ci, 1 ≤ i ≤ m, is authenticated by NC. When Ci wants to join the
conference, he must use his ri,t as the alias and the conference k to encrypt
all conversations.

5. The replay attack of the conference key distribution phase is prevented by
the timestamps ti and tnc since in step 2 and 4, NC will check the validity
of ti, 1 ≤ i ≤ m, and in step 5, each Ci will check the validity of tnc.

6. The replay attack of the conference key updating phase is prevented by the
timestamps t′′1 and t′′nc since in step 2, NC will check the validity of t′′1 and
in step 3 each Ci will check the validity of t′′nc.

7. In our scheme, NC only needs to protect two master secret keys α and β.
All shared keys γi = h(α||CIDi) and one-time shared keys δi,j = h(β||ri,j)
can be computed from these two master secret keys α and β. No passwords
or shared keys table is needed in NC. The security of these two secret keys
α and β is protected by the secure one-way hashing function h() [14, 15].

8. If the conference chairperson C1 wants to quit the conference, a simple
method to solve this situation is to select a new chairperson and restart the
conference. Another approach is to elect a new chairperson from conferees
and redistribute a new conference key k′ to all participants.

9. In our proposed scheme and Yi et al.’s scheme [20], when a person Cm+1
wants to join the conference, he needs to get the conference key k. If Cm+1
wiretaped the secret conversation of the conference before joining this con-
ference, he can derive the passed content of the conference. For solving this
problem, a new conference key k′ can be redistributed when Cm+1 joins the
conference. But this approach will increase the computation and communi-
cation cost of all participants.

10. In practical implementation, the smart cards used in our scheme are issued
by the trusted network center and assumed to be tamperproof devices. For
protecting C′

is smart card from being used by an illegal user, a weak password
can be chosen and used to protect it. Its role is like the personal identification
number (PIN) used in the banking system. If some illegal user tries to use the
smart card by wrong passwords exceeding some fixed times, the operating
system of the smart card will lock the login function.

11. In our scheme, for improving the repairability mentioned in [10, 12], the
secret value γi = h(α||CIDi) stored in each Ci’s smart card can be replaced
with the new formula γi = h(α||CIDi||j), where j is the number of times
that Ci has revoked his used secret key γi [12].

12. Some security weaknesses in schemes [7, 9] were proposed in [2]. Both our
proposed scheme and Yi et al.’s scheme [20] can prevent the attacks proposed
in [2] since the conference key is protected by the shared key between each
conferee and the network center but not embedded in a number combined
with each conferee’s secret using least common multiple (LCM).

13. In our proposed scheme and Yi et al.’s scheme [20], when the chairperson C1
is authenticated by the network center, the network center needs to call all

A Simple and Efficient Conference Scheme for Mobile Communications 91

other conferees. For hiding the identification information of all other confer-
ees, the concept of random indicators can be used. But in this approach, the
conferee must register his random number indicator for notifying the net-
work center his position. The calling message then can be encrypted using
the corresponding one-time random secret key.

5 Performance Consideration

Due to the fast progress of integrated circuit technology, using the factoring
method proposed in [13], factoring a 512-bit moduli can be done in less than ten
minutes on a US$10K device and factoring a 1024-bit moduli can be done in a
year on a US$10M device in 2003. Differently from the schemes [8, 9, 20] using
public-key cryptosystems, only symmetric cryptosystems and one-way hashing
functions are used in our proposed scheme for improving the efficiency. Our
approach provides another alternative for better efficiency and no need to base
on any assumed hard number theoretical problem, e.g., factoring or discrete
logarithm.

We assume that there are m conferees in the conference; the identifications
are represented with 64 bits; the block size and key size of secure symmetric
cryptosystems [1, 16] and the output size of secure one-way hashing functions [14,
15] all are 128 bits; the timestamps, the conference commands CA, CR, CQ, CU
and the lifetime of a conference key are of 32 bits. The modulus nb and nca in the
scheme [20] are of 1024 bits in order to make the factoring problem infeasible [13].
Communication cost for our scheme and the related scheme is listed in Table 1.

In step 1 of our proposed scheme in the conference key distribution phase,
C1 needs to sends NC the message (r1,t, Eδ1,t [CID1], Eγ1 [t1, CR, (CIDi, 2 ≤
i ≤ m), h(t1||CR||(CIDi, 2 ≤ i ≤ m))]), which is of 128 + 	(m + 2)/2
 ∗ 128 =
128+ 	(m + 2)/2
∗128 bits since the output size of an encryption message must
be the multiple of the block size and only cryptographic values are counted
for comparing with Yi et al.’s scheme [20]. In step 3, each Ci, 2 ≤ i ≤ m,
needs to send NC the message (ri,t, Eδi,t [CIDi], Eγi [ti, CA, h(ti||CA)]), which
is of 128 + 	3/2
 ∗ 128 = 384 bits. In step 4, NC needs to broadcasts the mes-
sage (Ek[tnc, L, h(tnc||CA||L)], (ri,t, Eγi [ri,t+1, δi,t+1, k]), 1 ≤ i ≤ m), which is of
((32 + 32 + 128)/128
∗128+((64 + 128 + 128)/128
∗128)∗m = 256+384∗m

Table 1. Communication cost (bits) for our scheme and other related schemes for
conference key distribution (m = 100)

Participant Communication type Our scheme Yi et al.’s scheme [20]
Bridge (NC) Send ≈38656 ≈13056
Bridge (NC) Receive ≈44672 ≈249472
Chairperson Send ≈6656 ≈8704
Chairperson Receive ≈640 ≈384
Other conferee Send ≈384 ≈2432
Other conferee Receive ≈640 ≈384

92 W.-S. Juang

bits and each Ci, 1 ≤ i ≤ m, must sieve the message (Ek[tnc, L, h(tnc||CA)], (ri,t,
Eγi [ri,t+1, δi,t+1, k])), which is of 640 bits. When m = 100, NC needs to send
256+384∗100 = 38656 bits and receive 128+	(100 + 2)/2
∗128+99∗384 = 44672
bits, the chairperson C1 needs to send 128 + 	(100 + 2)/2
 ∗ 128 = 6656 bits
and receive 640 bits, and the other conferee needs to send 384 bits and receive
640 bits.

In step 1 of Yi et al.’s scheme [20] in the secret key certificate issuing
scheme, C1 needs to sends B the message (R1, U1, V1), which is of 1024 +
128 + 	(1152 + 64 ∗m)/128
 ∗ 128 = 2304 + 	(64 ∗m)/128
 ∗ 128 bits. In step
3, each Ci, 2 ≤ i ≤ m, needs to sends B the message (Ri, Ui, Vi), which
is of 1024 + 128 + 	(32 + 64 + 32 + 1024 + 64)/128
 ∗ 128 = 2432 bits. In
the conference key distribution scheme of Yi et al.’s scheme [20], B broad-
casts the message (Ek(IDB), Ek(t||L), (Ai, Eki (k)), 1 ≤ i ≤ m), which is of
128+128+128∗m = 256+128∗m bits, to all conferees and each Ci, 1 ≤ i ≤ m,
must sieve the message (Ek(IDB), Ek(t||L), (Ai, Eki(k))), which is of 384 bits.
When m = 100, B needs to send 256 + 128 ∗ 100 = 13056 bits and receive
2304+	(64 ∗ 100)/128
∗128+2432∗99 = 249472 bits, the chairperson C1 needs
to send 2304 + 	(64 ∗ 100)/128
 ∗ 128 = 8704 bits and receive 384 bits, and the
other conferee needs to send 2432 bits and receive 384 bits.

In Yi et al.’s scheme [20], the conference bridge must compute the 4 modular
square roots of a quadratic residue modulo nb in registration of each conferee.
Using the method suggested in [20], 2 modulo exponentiations and 3 modular
multiplications are required to compute 4 modular square roots. Computational
cost for our scheme and Yi et al.’s scheme [20] is listed in Table 2 when m = 100.

In the registration phase, our scheme only needs 2 hash operations. In the con-
ference key distribution phase for establishing a common conference key among
100 conferees, NC must perform 651 symmetric encryption or decryption opera-
tions and 301 hashing operations. The chairperson C1 must perform 57 symmet-
ric encryption or decryption operations and 2 hashing operations. Each other
conferee must perform 8 symmetric encryption or decryption operations and 2
hashing operations.

In Yi et al.’s scheme [20], for becoming an eligible conferee, the secret key cer-
tificate issuing scheme must be executed in advance. The certificate authority
must perform 4 exponential operations, 4 multiplication operations and 1 hash-
ing operation for each conferee. For establishing a common conference key among
100 conferees, the secret key establishing scheme and the conference key dis-

Table 2. Computational cost for our scheme and other related schemes for conference
key distribution (m = 100)

Our scheme Yi et al.’s scheme [20]
NC C1 Ci B (or CA) C1 Ci

Registration 2H 0 0 4E+4M+1H 0 0
Conference key 651S+ 57S+ 8S+ 200E+400M+ 1I+2M+ 1I+2M+
distribution 301H 2H 2H 1650S+401H 62S+1H 13S+1H
E: Exponential operation I: Inverse operation M: Multiplication operation
S: Symmetric encryption or decryption H: Hashing operation

A Simple and Efficient Conference Scheme for Mobile Communications 93

tributing scheme must both be executed. The conference bridge B must perform
200 exponential operations, 400 multiplication operations, 401 hashing opera-
tions and 1650 symmetric encryption or decryption operations. The chairperson
C1 must perform 2 multiplication operations, 1 inverse operation, 62 symmet-
ric encryption or decryption operations and 1 hashing operation. Each other
conferee must perform 2 multiplication operations, 1 inverse operation, 13 sym-
metric encryption or decryption operations and 1 hashing operation. The inverse
operation for C1 and other conferee can be performed in advance.

We summarize the complexity and functionality of related schemes and our
scheme in Table 3. In our scheme, only one-way hash functions and symmetric
key encryptions (decryptions) are required for each participant. In practical con-
siderations, one-way hash functions can be constructed by symmetric cryptosys-
tems [14]. This method can reduce the needed memory in smart cards for storing
cryptographic programs. The computation cost of our scheme is extremely low
compared to that of the scheme in [20] based on public key cryptosystems. In our
scheme, NC only has to protect his master keys α and β. No shared keys table
is needed. In Yi et al.’s scheme [20], after the secret key establishing scheme
is executed, the secret key ki is shared between Ci and the conference bridge.
The conference bridge must keep a shared keys table for later use. After the
registration phase, CIDi, γi, ri,0 and δi,0 are stored in the memory of C′

i smart
card in our scheme. The needed memory in a smart card for our scheme is of
(64+128+64+128) = 384 bits. The values (IDa, ia, sa) are stored in the mem-
ory of A′s smart card after the secret key certificate issuing scheme of Yi et al.’s
scheme [20]. The needed memory in a smart card for Yi et al.’s scheme [20] is of
(64 + 32 + 1024) = 1120 bits. For preserving location privacy, the identification
and secret certificate (IDi, ii, si) of Ci in the secret key establishing scheme of
Yi et al.’s scheme [20] must be encrypted by the secret key ki, which is randomly

Table 3. Comparisons between our proposed scheme and other related schemes

Our scheme Yi et al.’s scheme [20]
C1 Very low Medium
C2 Yes Yes
C3 Yes No
C4 384 bits 1120 bits
S1 Yes Yes
S2 Yes Yes
S3 Yes Yes
S4 Yes Yes
C1: Computation cost
C2: Dynamic participation
C3: No shared keys or password table in the server
C4: Needed memory in a smart card
S1: Content privacy
S2: Location privacy
S3: Authenticity
S4: Prevention of the replaying attack

94 W.-S. Juang

chosen by Ci and protected by the Rabin’s public key cryptosystem [17, 19]. In
our scheme, for preserving location privacy the identification CIDi is encrypted
by the one-time secret key δi,t = h(β||ri,t), which can only be computed by NC
using the one-time random indicator ri,t and the secret key β. When NC derives
the identification CIDi, he then can compute the shared key γi = h(α||CIDi)
between NC and Ci using the secret key α, and verify the authentication tags.

6 Conclusion

In this paper, we have proposed a simple and efficient conference scheme for
mobile communications. By using one-time random indicators for preserving lo-
cation privacy, only symmetric cryptosystems and one-way hashing functions are
used in our proposed scheme. This approach can significantly improve the effi-
ciency and provide much functionality for conference key distribution in mobile
communications.

Acknowledgment. This work was supported in part by the National Science
Council of the Republic of China under contract NSC-93-2213-E-128-005. The
reviewers’ insightful comments helped us to improve the paper significantly.

References

1. “Data encryption standard,” in National Bureau of Standards. Washington, DC:
U.S. Dept. of Commerce, 1977.

2. B. Feng, “Analysis of a conference scheme under active and passive attacks”, In
H. Wang et al. (ed.), ACISP 2004, LNCS 3108, pp. 157-163, Springer, New York,
2004.

3. Y. Frankel, A. Herzberg, P. Karger, H. Krawczyk, C. Kunzinger and M. Yung,
“Security issues in a CDPD wireless network,” IEEE Personal Communi., Vol. 2,
pp. 16-27, 1995.

4. I. Ingemarsson, D. Tang and C. Wong, “A conference key distribution system,”
IEEE Trans. on Inform. Theory, Vol. IT-28, pp. 714-720, 1982.

5. S. Hirose and K. Ikeda, “A conference key distribution system for the star config-
uration based on the discrete logarithm problem,” Inform. Processing Lett., Vol.
62, pp. 189-192, 1997.

6. G. Horn, K. Martin and C. Mitchell, “Authentication protocols for mobile network
environment value-added services,” IEEE Trans. on Vehicular Technology, Vol. 51,
No. 2, pp. 383-392, 2002.

7. K. Hwang and C. Chang, “A self-encryption mechanism for authentication of roam-
ing and teleconference service,” IEEE Trans. on Wireless Communications, Vol. 2,
No. 2, pp. 400-407, 2003.

8. M. Hwang and W. Yang, “Conference key distribution schemes for secure digital
mobile communications,” IEEE J. Select Areas Communi., Vol. 13, pp. 416-420,
1995.

9. M. Hwang, “Dynamic participation in a secure conference scheme for mobile com-
munications,” IEEE Trans. on Vehicular Technology, Vol. 48, No. 5, pp. 1469-1474,
1999.

A Simple and Efficient Conference Scheme for Mobile Communications 95

10. T. Hwang and W. Ku, “Repairable key distribution protocols for internet environ-
ments,” IEEE Trans. on Communications, Vol. 43, No. 5, pp. 1947-1950, 1995.

11. K. Koyama and K. Ohta, “Identity-based conference key distribution scheme,”
Advances in Cryptology-Crypt’87, pp. 175-184, Springer, New York, 1987.

12. W. Ku and S. Chen, “Weaknesses and improvements of an efficient password based
remote user authentication scheme using smart cards,” IEEE Trans on Consumer
Electronics, Vol. 50, No. 1, pp. 204-207, 2004.

13. A. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes and P.
Leyland, “Factoring estimates for a 1024-bit RSA modulus,” In Laih, C. (ed.),
Advances in Cryptology-AsiaCrypt’03, Lecture Notes in Computer Science, 2894,
pp. 55-74, Springer, New York, 2003.

14. R. Merkle, “One way hash functions and DES,” In Brassard, G. (ed.), Advances
in Cryptology-Crypt’89, Lecture Notes in Computer Science, 435, pp. 428-446,
Springer, New York, 1989.

15. NIST FIPS PUB 180-2, “Secure Hash Standard,” National Institute of Standards
and Technology, U. S. Department of Commerce, 2004.

16. NIST FIPS PUB 197, “Announcing the Advanced Encryption Standard(AES),”
National Institute of Standards and Technology, U. S. Department of Commerce,
2001.

17. M. Rabin, “Digitalized signatures and public key functions as intractable as fac-
torization,” MIT Lab. Computer Sci., TR 212, Jan. 1979.

18. R. L. Rivest, “The MD5 message-digest algorithm,” RFC 1321, Internet Activities
Board, Internet Privacy Task Force, 1992.

19. H. Williams, “A Modification of RSA public-key encryption,” IEEE Trans. on
Inform. Theory, Vol. IT-26, No. 6, pp. 726-729, 1980.

20. X. Yi, C. Siew and C. Tan, “A secure and efficient conference scheme for mobile
communications,” IEEE Trans. on Vehicular Technology, Vol. 52, No. 4, pp. 784-
793, 2003.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 96 – 107, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Hash-Chain Based Authentication Scheme
for Fast Handover in Wireless Network∗

Kihun Hong1, Souhwan Jung1,∗∗, and S. Felix Wu2

1 School of Electronic Engineering, Soongsil University, 1-1, Sangdo-dong,
Dongjak-ku, Seoul 156-743, Korea

Kihun@cns.ssu.ac.kr, souhwanj@ssu.ac.kr
2 Department of Computer Science, University of California, Davis, CA 95616, USA

wu@cs.ucdavis.edu

Abstract. This paper proposes a hash-chain based authentication scheme for fast
handover in wireless network (HAS). The full authentication procedure described
in IEEE 802.11 is inappropriate to be applied to a handover, since it has heavy
operation and delay time during handover. Though various methods were
proposed to solve the problem, the existing schemes degrade the security of
authentication or impose the entire administrative burden of the authentication on
the authentication server. The main focus of this paper is on reducing the
administrative burden of the authentication server and enhances the security
strength of the fast handover authentication. The proposed scheme in this paper is
robust to the attack by a compromised AP by using hash key chain between a
mobile station and the authentication server. The scheme also decentralizes the
administrative burden of the authentication server to other network entities.

1 Introduction

For the upcoming mobile environment on the Internet, much of research focuses on the
mobile access and seamless connection when user moves. Currently, IEEE 802.11
standard [1,2,3,4] includes not only wireless connection of a station with one access
point (AP), but also the station’s mobility via several APs. The handover of the mobile
station (STA) from the serving AP to the other AP incurs delay time due to probe,
decision, re-authentication, and re-association. On the other hand, with increasing
multimedia applications, Internet traffic stream has changed from text and picture-based
data to video and audio-based data, and these multimedia traffics are unable to endure
the delay time during the handover. This paper addresses reducing the latency of the
authentication incurred by the handover of the station. In the bootstrapping procedure,
the full authentication described in IEEE 802.11 consists of EAP/TLS [5] which

∗ This work was supported by the Korea Research Foundation Grant (M07-2004-000-10295-0).

This research is supported by the ubiquitous Autonomic Computing and Network Project, the
Ministry of Information and Communication (MIC) 21st Century Frontier R&D Program in
Korea.

∗∗ Corresponding author.

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 97

requires over one second for authentication process with the authentication server (AS).
Therefore, it is difficult to apply the full authentication procedure, including RADIUS,
to the handover due to its heavy operations and long delay time. In solving the latency
problem, two solutions based on pre-authentication are considered: security context
transfer method and proactive key distribution method. The schemes based on pre-
authentication have a similar delay time in the handover since they perform re-
authentication before the mobile station’s handover. First, the security context transfer
or proactive caching methods [8] securely transfer hashed security credentials from a
current AP to neighboring APs using IAPP (Inter-Access Point Protocol). But these
kinds of solutions weaken security of the authentication process since the old AP still
knows about security credentials of new AP after the handover of the mobile station. As
an alternative method, proactive key distribution scheme uses neighbor graph to deliver
new pairwise master key (PMK) to neighboring APs in the manner of one-hop ahead of
the mobile station. The scheme, however, imposes the entire administrative burden of
the re-authentication like neighbor graph, key generation, and delivery on the
authentication server. For that reason, our main focus in this paper is on reducing the
administrative burden of the authentication server and enhancing the security strength of
the fast handover authentication.

The main idea of HAS (a hash-chain based authentication scheme for fast handover
in wireless network), as proposed in this paper, is based on key sharing between the
AS and the STA using the hash chain without an additional message. The
authentication key generated in the AS is delivered to each neighboring AP and each
AP makes new PMK from this key and hashed old PMK delivered from an old AP.
Since the mobile station having the same initial value of the authentication key also
can generate the hash key chain, it consecutively shares the authentication key with
the AP without an additional message. This key derived from hash-chain enhances the
security strength of the security context transfer method and reduces the
administrative burden of the authentication server of the proactive key distribution
method. The proposed scheme in this paper is robust to the attack by a compromised
AP using the hash key chain between the mobile station and the authentication server,
and it decentralizes the administrative burden of the authentication server to other
network entities.

The paper is structured as follows: 1) Section 2 introduces an environment of the
wireless network and problem statement and reviews related works; 2) Section 3
describes an initial full authentication procedure and a pre-authentication procedure of
the proposed scheme; 3) Section 4 explains a security analysis of the HAS and
compares the performance of some authentication schemes based on computation and
communication overhead in section 5; 4) Finally, the concluding remarks are
presented in Section 6.

2 Motivation and Related Works

2.1 Motivation

In this section, the wireless network entities for the authentication and problems of the
existing schemes for the fast handover authentication are introduced. The wireless net-
work consists of a mobile station, access point, access router (AR), and authentication

98 K. Hong, S. Jung, and S.F. Wu

server. Users having the mobile station are usually moving to any place and use the
Internet through the access point. And the correspondent access point requests authenti-
cation information to the mobile station to verify access permission on the wireless
network. When the mobile station first accesses the network, the mobile station per-
forms an initial full authentication with the authentication server. However, since the
full authentication is a heavy procedure consisting of EAP (Extensible Authentication
Protocol)/TLS (Transport Layer Security) and AAA (Authorization, Authentication and
Accounting) protocol like RADIUS or Diameter, and spends a lot of the network re-
sources and delay time, the full authentication is not suitable for the handover of the
mobile station. Hence, a novel and optimal authentication scheme is required for the fast
handover. To reduce the latency, various schemes were proposed.

Now, the pros and cons of the existing schemes for the recently proposed fast-
handover authentication will be discussed. There are two approaches in fast handover
authentication schemes in wireless network: an authentication method during hand-
over and a pre-authentication method. In the initial study, though a number of the
studies focus on the authentication method during a handover, they got more delay
time in comparison to the pre-authentication method. Therefore, the current study
mostly focuses on the pre-authentication method for fast handover.

Pack et al. have proposed the predictive authentication scheme using FHR(Frequent
Handoff Region) selection in [6]. First, this method finds the FHR which is a set of
neighboring APs and is determined by the users’ movement pattern and the APs’
locations. The mobile station requests the authentication process to the AS and the AS
responds to all APs belonging to the FHR using multiple authentication messages
containing a key. This method, however, does not support consecutive handover to
other area without the full authentication and incurs the attack by disclosed key of a
compromised AP because APs share the authentication key information among them.

Mishra et al. suggested proactive key distribution method for fast handover in [7].
To reduce the delay time of the authentication procedure, proactive key distribution
method is based on pre-distribution of the authentication key one hop ahead of the
mobile station. AS can know a set of neighboring APs using a neighbor graph and
constructs new PMK for neighboring APs from old PMK and MAC addresses of the
neighbor AP and the mobile station. These new PMKs are sent to each neighboring
AP in the neighbor graph. It is an efficient authentication scheme for reducing the
authentication latency of the handover. However, this scheme adds an administrative
burden to the AS such as the computation of the neighbor graph, an encryption of the
key delivery message, and pseudo-random function for generating PMK, since AS
performs the most of the authentication operation. In particular, in case that user and
user’s mobility increases, AS may get the serious burden of the authentication. An-
other problem is that this scheme has no method to perform a fast re-authentication
from the station or AP when AS loses trace of the station due to any reason since the
authentication procedure is only initiated by the AS.

Wang et al. proposed an authentication scheme using an exchange of random
number in [9]. The current AP sends exclusive ORed key with random number to a
mobile station and a target AP. Then the two nodes exchange nonces and construct
the new PMK from nonces and the key received from the current AP. It is a simple
authentication method without communication with AS. But since an attacker, having
exclusive ORed key from a compromised AP, may also get the nonces in plaintext, he

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 99

could easily make the new PMK. In case of a simple context transfer method using
IAPP, the same security problem occurs.

We review the problems of existing schemes such that predictive authentication
scheme and the authentication scheme, using an exchange of random number, require
strengthening security between APs, or the proactive key distribution method de-
mands high computation overheads and neighbor graph in AS. It may not be appro-
priate to authenticate a fast moving node using the existing schemes.

2.2 Trust Relationship

The entities in the wireless network have a trust relationship between them and use it
for authentication and protection of the communication channel. Figure 1 shows the
trust relationship among the mobile station, the access point, and the authentication
server. AP keeps the trust relationship with the neighboring APs, and this kind of the
relationship supports the security of the IAPP. The inter-access point protocol is a
communication protocol between APs to manage various local events occurred in
network. It also includes RADIUS infrastructure to provide mapping the ID of the AP
to IP address and key distribution between APs for the protection of the channel.
IAPP supports the managements of service set and the mobility of STA. IAPP in-
cludes the proactive caching method to support fast handover by caching the context
of the station in the candidate set of APs and can dynamically find its neighboring
APs. AP also has the trust relationship with AS for protecting authentication mes-
sages. The mobile station trusts AS with each other via EAP-TLS established through
the full authentication procedure and uses it for protecting the path between them.
These trust relationships will be used to design our hash-chain based authentication
scheme for fast handover.

STA

AP

AS

APTrust via IAPP

Trust via EAP-TLS

Implicit
trust

Trust via
shared

key

Fig. 1. The trust relationship between network entities

3 A Hash-Chain Based Authentication Scheme for Fast Handover

This section describe an initial full authentication procedure and a pre-authentication
procedure applying hash key chain for network access authentication that is named a
hash-chain based authentication scheme for fast handover in wireless network (HAS).

100 K. Hong, S. Jung, and S.F. Wu

The underlying idea is that the current access point and a local authentication server
send authentication keys to neighboring APs before the mobile station moves from
the current AP to any neighboring AP. To reduce the computation burden of the au-
thentication server, the current AP sends its hashed pairwise master key to the
neighboring APs in this scheme.

3.1 Initial Full Authentication Procedure

When the mobile station is booting, since the AP requests that the mobile station must
be authenticated by a home authentication server to access the network, the mobile
station performs the initial full authentication procedure with the AP, the local authen-
tication server, and the home authentication server. Through this procedure, the mo-
bile station and AP share an initial PMK defined in 802.11i and calculate PMK0 used
for protecting the channel between the mobile station and the current AP as follows:

PMK0 = prf(PMKinitial | AP_MAC | STA_MAC)

For device authentication, PMK0 is calculated from initial PMK, AP’s MAC (Me-
dium Access Control) address, and STA’s MAC address using prf (pseudo-random
function). The mobile station and AP make data encryption key and data MIC (Mes-
sage Integrity Check) key from this PMK0. In this procedure, the mobile station and
AP decide cryptography algorithms for encryption and message integrity check. In
particular, the mobile station and the local authentication server except AP also share
initial authentication key (IAK) which will be used to authenticate the mobile station.

3.2 Pre-authentication Procedure

After the initial full authentication procedure, the current AP and neighboring APs per-
form a pre-authentication procedure for reducing authentication delay time during hand-
over of the mobile station before the mobile station moves to one of neighboring APs.

 cAP nAPs: The current AP securely transfers handover key (HOK) to the
neighboring APs using IAPP. In the first, the current AP respectively makes handover
keys for each neighboring AP as follows:

HOKi = prf(PMKi-1 | NEIGHBOR_AP_MAC | STA_MAC)

An index of HOK means the sequence of handover of the STA from 1 to n against
each handover of it. The current AP can find neighbors using IAPP or neighbor
graphs introduced in [4, 8] and keep the list of the neighboring APs and their MAC
addresses. HOKi provides mutual layer 2 authentication using AP’s MAC address and
STA’s MAC address and also supports a perfect forward secrecy to the current AP
using pseudo-random function because neighboring APs or the attacker cannot make
the current PMK between the current AP and STA from the HOKi. Figure 2 shows the
current AP sending the handover key to each AP in the one-hop neighbors circle,
which consists of APs in one hop distance from the current AP. The mobile station
served by the current AP can move to the only one AP in the one-hop neighbors cir-
cle. G is the group of the entire neighboring APs and describes as follows:

G = { AP1, AP2, AP3, AP4, AP5 }

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 101

Fig. 2. Handover key distribution

IAPP provides context delivery service for fast handover between APs. IAPP message
is protected by the trust relationship between APs and includes STA ID, sender ID, and
security context containing the handover key, AK index information, and cryptography
algorithms for encryption and message authentication code used in the current AP.

After the current AP sends the HOKi, the authentication server has to deliver another
authentication key to the neighboring APs so that each AP may construct PMK as the
complete authentication key. However, for an isolation of the authentication key before
and after the handover, the authentication server must generate a sub-series of the IAK
(Initial Authentication Key) shared from the initial full authentication procedure. For the
sub-key generation of the IAK, two kinds of method are proposed. The mobile station
and the authentication server already share initial AK in the initial full authentication
procedure and compute using the same method on each side. The first method is used
for real-time generation of the AK at the handover of STA. IAK0 is the same value as
the initial AK, as depicted in figure 3(a). F and F’ are two different pseudo-random
functions. An index of AK means the sequence of handover of the mobile station and
AS consecutively uses the same index from 1 to n against each handover of it. In the
pre-authentication procedure, the mobile station and the authentication server
individually compute IAKi and AKi at each side. The authentication server uses AKi as
authentication key for the handover of STA and sends it to the neighboring APs.
Though this method may not include additional operations in the initial full
authentication time, it has little computation burden at each pre-authentication phase.

The second one is used for pre-generation of AK chain, and the key chain as shown
in figure 3(b) will be stored in the mobile station and the authentication server. This
pre-generation is completely performed just after the initial full authentication
procedure. In this method, IAKn is the same value with initial AK as depicted in
figure 3(b). After the initial full authentication procedure, the mobile station and the
authentication server individually compute the hash key chain from IAKn and AK1 at
each side. The authentication server uses AK1 as AK for the first handover of the
mobile station and sends it to the neighboring APs. It has the computation burden of
the initial full authentication procedure. From now on, the first method in the
description of the scheme will be used.

102 K. Hong, S. Jung, and S.F. Wu

Fig. 3. AK hash-chain

• nAPs AS: After exchanging the IAPP messages, the neighbor AP (nAP), who
received the security context immediately, requests the authentication key to the
authentication server using Authentication Key Request message including ID of
the current AP (cAP), its ID and AK index information as shown in figure 4.

• AS nAPs: Since AS already has the IAK shared with the mobile station in
the initial full authentication procedure, after computing AKi, AS simply trans-
fers Authentication Key Response message with AKi to the AP.

Fig. 4. Pre-authentication message exchange

In case of AK pre-generation method, the AS sends AKi in the storage. The type
of AK depends on AK generation method mentioned above. It must be noted that the
AS in this procedure must transfer AKi to the neighbors except the current AP, be-
cause the current AP may make new PMK between STA and new AP if it has hand-
over key and AKi. The information of the current AP can be sent by the mobile

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 103

station. After exchanging authentication key messages, each neighboring AP ulti-
mately calculates PMKi for the mobile station and itself using the handover key and
AKi with pseudo-random function as follows:

PMKi = prf(HOKi | AKi)

The AP maintains this key in the soft state for a specific time. If the handover
event of the mobile station does not occur in time, the key information in the soft state
is dropped by the AP. When the mobile station moves to nAP, it constructs PMKi
without additional messages with other network entities and may send a re-association
request message for access to new AP after handover.

After the pre-authentication, the mobile station can move to any neighboring AP. It
performs four-way handshake with new AP after the exchange of re-association mes-
sage. It is used to confirm the freshness of shared key and the liveness of the station and
the AP. Using the exchange of the index information of the keys in this procedure, the
station and AS confirm the synchronization of the sub keys of the AK and PMK.

3.3 Re-authentication Without HOK

It can happen that the station moves fast to new AP before the arrival of the handover
key through IAPP or reconnects to a new AP which is not neighboring AP after loss of
its connection due to any reason. In this case, since the AP doesn’t have the handover
key, it cannot compute PMK with the station. Therefore, the PMK computation method
without handover key is also recommended. When the AP, not having handover key,
receives re-association message from any station, it can make PMK as follows:

PMKi = prf(AKi | AP_MAC | STA_MAC)

However, since the station doesn’t know about the situation of the AP, AP can no-
tify parameters of PMK computation to the station using a four-way handshake as
mentioned before. The cipher suite between AP and STA can be also exchanged in
this handshake.

4 Security Analysis

One of the main goals is to enhance the security strength of the fast handover authen-
tication. The HAS strengthens the weakness of the security context from the old AP
using AK. As mentioned before, since the old AP in security context transfer scheme
still holds security credentials after handover of the mobile station, security context
transfer scheme using IAPP does not support perfect forward secrecy (PFS). Wang’s
authentication scheme using random number also has the similar security problem. In
this scheme, even if the mobile station and nAP exchange nonces, the attacker, coop-
erated with the compromised old AP, easily captures the nonces in the plaintext.
However, the HAS brings AK of the AS into security context transfer scheme and
solves the security problem of the existing schemes.

AP is usually located in the public area and any attacker can easily access the AP
and get secret in the memory. However, HAS guarantees perfect forward secrecy
using the authentication server. If the old AP was compromised with an attacker, then

104 K. Hong, S. Jung, and S.F. Wu

the attacker can easily obtain the old pairwise master key used between the old AP
and the mobile station. Even if the attacker has the old PMK, he cannot generate a
new PMK without AK from the local authentication server because the local AS only
transfers AK to APs having trust relationship with him except the old AP. The HAS
also supports perfect backward secrecy (PBS) using pseudo-random function. Even if
the attacker obtains HOK and AK of the new AP, he is unable to create the old PMK
from HOK according to the cryptographic character of the pseudo-random function.
The attacker also cannot compute AKi-1 or AKi+1 from AKi, since each AK with index
i was isolated by F’.

5 Performance Evaluation

When the mobile station moves to the new AP, the pre-authentication methods obvi-
ously have smaller delay time than the general authentication methods during hand-
over since the neighboring APs in pre-authentication schemes already performed the
authentication of the mobile station before handover. After the handover, they just do
key freshness and key derivation. For that reason, the general authentication methods
during handover are not suitable to compare performance with HAS. Pack’s predic-
tive authentication scheme [6] and Wang’s authentication scheme [9] have similar
security problem by the compromised AP. In Pack’s model, the compromised AP can
obtain the key of the mobile station due to the multiple authentication messages con-
taining the key. Old AP in Wang’s scheme is also able to make new PMK from old
PMK with random numbers in the plain text message. Due to these weaknesses of
security, Pack and Wang’s schemes have been excluded from the performance com-
parison. Hence, in this section, only the HAS with the proactive key distribution
method has been compared.

The latency of the pre-authentication is not an important problem in a viewpoint of
performance since it doesn’t have an effect on the handover delay time. The important
point in the pre-authentication schemes is the computation and communication burden

Table 1. Comparison of handover authentication schemes. (m is the average number of neighbor-
ing APs. The numbers in computation overhead are the number of pseudo-random function and
the number of encryption or decryption in order.)

Proactive key
distribution

HAS with
real-time key

generation

HAS with key
pre-generation

Neighbor discovery AS APs APs

AS m, 3m 2, 2m 0, 2m
cAP 0, 0 m, 0 m, 0
nAP 0, 3m 1, 2m 1, 2m

Computation
overhead
[prf, enc. and
 dec.] STA 1, 0 4, 0 2, 0
Communication
overhead between AS
and AP

3m

2m

2m

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 105

of the network entities. In particular, these overheads must not be centralized in only
one node. However, in case of the proactive key distribution scheme, AS performs all
authentication operations as neighbor discovery, PMK computation for each candi-
dates and key delivery. This scheme also requires additional processes for updating
the topology of the APs and confirming the mobility of the station, because AS
doesn’t know a change of the APs’ topology and the actual destination AP of the
station after handover. Though these processes increase more the computation and
communication overhead of the AS, since the details of these additional processes
were not described in the paper [7], the overhead of the PMK computation and the
communication between AS and AP have been compared. This comparison of the
handover authentication schemes is described in table 1. Since the inter-access point
protocol is basically used to support fast roaming by caching the context of the STA
in the candidate set of APs, the general overhead related with IAPP, except the com-
putation of the handover key, is not included in the table 1. Although, in case of HAS,
the total computation overhead of the pseudo-random function of the network entities
is a little increased than the proactive key distribution scheme, the computation and
communication burden of the AS are decreased. The neighbor discovery in HAS is
also performed by APs.

The computation cost of the AS for two handover authentication schemes has also
been compared, proactive key distribution and HAS using a simulation. The real-time
generation method is used to generate AK for the HAS. To show the difference of the
computation cost due to variation of the number of the station, simulation is per-
formed individually with 100 stations and 1000 stations. It is assumed that the mobile
station can move in four directions in a building or street, and each user having the
station randomly moves six times for one hour. The descriptions of parameters for
simulation are given in table 2.

Table 2. Simulation Parameters for Figure 5

Parameters Description
m the average number of neighboring APs m = 4.
p the handover number per hour p = 6

computation
cost

the number of the pseudo-random function computed
in AS

Figure 5 shows the difference of the computation overhead of the AS in two au-
thentication schemes. The number of the pseudo-random function in AS must be
counted every 10 minutes as the computation cost. For 100 stations, the difference
between the proactive key distribution scheme presented by the asterisk markers and
HAS presented by the dot markers is small. On the other hand, the difference between
the proactive key distribution scheme presented by the triangle markers and HAS
presented by the circle markers is large for 1000 stations. As a result, the authentica-
tion processes of the station are increased by the addition of users, and AS has a less
computation burden in HAS.

106 K. Hong, S. Jung, and S.F. Wu

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time(minutes)

C
om

pu
ta

tio
n

co
st

 o
f A

S

1000 STAs in proactive key distribution
1000 STAs in HAS
100 STAs in proactive key distribution
100 STAs in HAS

Fig. 5. Comparison of the computation cost of the AS

6 Conclusions

In this study, a hash-chain based authentication scheme for fast handover in wireless
network has been proposed. The pros and cons of the existing schemes have been
investigated and their problems have been described. The main problem is heavy
operations and delay time during the handover of the full authentication procedure
described in IEEE 802.11. In particular, to solve the security problem and the admin-
istrative burden of the authentication server, this paper introduced the hashed key
chain and handover key concept. In solving the security problem, the authentication
key is brought into the authentication scheme based on the context transfer of IAPP.
The administrative burden of the authentication server is reduced by combining the
security context transfer with hash key chain. The authentication server in the HAS
responds only to the AK request message. This method can be used for a seamless
service on the mobile system such as VoIP, multicast broadcasting, online movies,
and so on. This scheme can be extended to a fast-handover authentication scheme for
inter-domain movements.

References

1. IEEE standard, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” IEEE 802.11, 1999.

2. IEEE standard, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications Amendment 6: Medium Access Control (MAC) Security En-
hancements,” IEEE 802.11i, 2004.

3. IEEE standard, “Port-Based Network Access Control,” IEEE 802.1x, 2001.
4. IEEE standard, “IEEE Trial-Use Recommended Practice for Multi-Vendor Access Point

Interoperability via an Inter-Access Point Protocol Across Distribution Systems,” IEEE
802.11f, 2003.

 A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network 107

5. B. Aboba, D. Simon, "PPP EAP TLS Authentication Protocol," IETF RFC 2716, October
1999.

6. S. Pack, Y. Choi, "Fast handoff scheme based on mobility prediction in public wireless
LAN systems," Communications, IEE Proceedings Volume 151, Issue 5, 24 Oct. 2004
Page(s):489 – 495

7. Arunesh Mishra, Min Ho Shin, Nick L. Petroni, Jr., T. Charles Clancy, William A. Ar-
bauch, "Proactive key distribution using neighbor graphs," IEEE Wireless Communica-
tions, Volume 11, Issue 1, 26 – 36., 2004.

8. Arunesh Mishra, Min Ho Shin, William A. Arbauch, "Context Caching using Neighbour
Graphs for Fast Handoffs in a Wireless Network," in Proc of IEEE INFOCOM, Hong
Kong, Mar. 2004.

9. Hu Wang, Anand R. Prasad, “Fast Authentication for Inter-domain Handover,” ICT 2004,
LNCS 3124, pp. 973-982, 2004.

10. M.S. Bargh, R.J. Hulsebosch, E.H. Eertink, A. Prasad, H. Wang, P. Schoo, "Fast Authenti-
cation Methods for Handovers between IEEE 802.11 Wireless LANs," WMASH'04, Oc-
tober 1, 2004.

Efficient Multicast Stream Authentication for the Fully
Adversarial Network Model�

Christophe Tartary�� and Huaxiong Wang

Division of ICS, Department of Computing,
Macquarie University, NSW 2109, Australia
{ctartary, hwang}@ics.mq.edu.au

Abstract. We consider the stream authentication problem when an adversary
has the ability to drop, reorder or inject data packets in the network. We propose a
coding approach for multicast stream authentication using the list-decoding prop-
erty of Reed-Solomon codes. We divide the data to be authenticated into a stream
of packets and associate a single signature for every λ n packets where λ and n
are predesignated parameters. Our scheme, which is also joinable at the boundary
of any n-packet block, can be viewed as an extension of Lysyanskaya, Tamassia
and Triandopoulos’s technique in which λ = 1. We show that by choosing λ and
n appropriately, our scheme outperforms theirs in both signature and verification
time.

Our approach relies on signature dispersion as SAIDA and eSAIDA. Assum-
ing that we use RSA for signing and MD5 for hashing, we give an approximation
of the proportion of extra packets per block which could be processed via our
technique with respect to the previous scheme. As example when we process
λ = 1000 blocks of 20000 64-byte-packets, the gain of our scheme with respect
to Lysyanskaya et al.’s is about 30%.

Keywords: Stream authentication, signature dispersion, Reed-Solomon codes.

1 Introduction

Broadcast communication enables a sender to distribute data to many receivers via a
public communication channel such as the Internet. Their applications cover a large
scope of areas such as software updates, sensor networks, GPS signals, pay-TV, stock
quotes and military defense systems for instance. Nevertheless existing IP protocols in
the Internet only provide a best-effort delivery process and the large number of receivers
prevents lost content from being redistributed. In addition malicious users having ac-
cess to the network can perform harmful actions on the data stream. Thus the security
relies on two aspects: the network properties and opponents’ computational power. In
this paper we will consider the computationally secure model for broadcast authentica-
tion. That is, the opponents have bounded computational abilities.

� This work was supported by the Australian Research Council under ARC Discovery Project
DP0344444.

�� The author’s work was funded by a iMURS scholarship provided by Macquarie University.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 108–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 109

Many techniques have been designed to deal with multicast stream authentication
[3]. Examples as pay-TV and stock quotes involve that data stream can be infinite and
must be consumed as soon as they reach the receivers (or within a short delay). The
most basic idea of signing each packet1 is inappropriate, as digital signatures are typ-
ically time expensive. The available transmission bandwidth does not allow the use of
one-time or k-time signatures [5, 21] either because of their large size whereas the con-
struction of Boneh et al.’s short signatures [2] is too restrictive to be used in our case.
Since signing each packet is prohibitive, other techniques rely on signature amortiza-
tion. This means that one signature is produced and its cost (both in time and overhead)
is amortized over several packets (due to hash functions for instance).

In [23], Wong and Lam built a Merkle-hash tree [10] to distribute hashes. Their
scheme is tolerant against any kind of packet loss. Nevertheless the tag2 size is loga-
rithmic in the number of packets per block.

In [5], Gennaro and Rohatgi proposed to sign the first stream packet and link the
hash of each packet into the next one’s tag. This approach needs the entire stream to be
known in advance and if a single packet is lost then the whole process fails.

To deal with packet loss, Perrig et al. designed EMSS [17, 18] and MESS [18] by
appending the hash of each packet to a fixed number of followers according to a spe-
cific pattern. One packet is signed from time to time to ensure non-repudiation and is
always assumed to be received. They modeled the network loss pattern by a k-state
Markov chain (see [16, 24]) and provided bounds on the packet verifiability. Consid-
ering the diversity of computational abilities within the set of receivers, Challal et al.
[4] used different layers for hash distribution. Their H2A protocol gave good practical
improvements with respect to MESS. Golle and Modadugu [6] and Miner and Stad-
don [11] proved other bounds based on augmented chains. The main drawback of all
these schemes is that they rely on the signature reception reliability (except Wong and
Lam’s one [23]). To overcome this problem, one possibility is to split the signature into
k smaller parts where only 	 of them (< k) are enough for recovery.

The Information Dispersal Algorithm [20] has been used by Park et al. [13, 14] and
Park and Cho [15] to design two similar schemes SAIDA and eSAIDA (the later having
a better packet verification probability). Al-Ibrahim and Pieprzyk [1] used linear equa-
tions and polynomial interpolation whereas Pannetrat and Molva [12] proposed some
erasure codes to achieve signature dispersion. Nevertheless these four schemes share a
commun drawback: they do not tolerate a single packet injection.

Using an error-correcting code approach, Lysyanskaya et al. [8] designed a scheme
resistant to packet loss and injections (provided some assumptions on the network de-
livery reliability). As the five previous schemes above, a single signature is created
per block and amortized over several packets. These techniques extended the notion
of packet signature to block signature. The scheme developed in [5] generates a single
signature for the whole stream but does not tolerate a single packet loss.

In order to decrease time spent for signature generation and verification, our ap-
proach is to generate one signature for every family of λ blocks where each of them

1 Since the data stream is large it is divided into fixed-size entities called packets.
2 We call authentication tag the extra information appended to a packet to provide its

authenticity.

110 C. Tartary and H. Wang

consists of n packets. The value of the parameter λ has to be chosen carefully by the
sender since he will have to memorize λn packets at a time. Nevertheless, as in [8],
data are sent and can be authenticated by receivers per block. This regulates the traffic
in the network avoiding too irregular throughput variations which could create a bot-
tleneck. The family signature is spread within each block which enables a receiver to
join the communication group at any block boundary. The minimal value, Λ, of λ from
which our protocol is faster than Lysyanskaya et al.’s one remains very small. For in-
stance we have Λ = 2 up to n = 30000 when using RSA and MD5 for 64-byte packets.
This value for n is much larger than the one used by Perrig et al. to implement EMSS
(n = 1000). The profit of our approach is significant. For instance we have a benefit
of at least 50% more packets per block with respect to Lysyanskaya et al.’s technique
and linear equations’ approach (up to n = 11500) and to SAIDA and eSAIDA (up to
n = 13300). If n = 1000 (as for EMSS) then our technique provides a benefit larger
than 90% more packets per block than Lysyanskaya et al.’s scheme.

The paper is organized as follows. In the following section, we describe the scheme
developed in [8]. In Sect. 3 we will introduce our modifications and prove the security
of this new scheme under similar assumptions to those made in [8]. In Sect. 4 we will
compare our extended scheme to some above ones to get an idea of the gain it provides
towards them. In Sect. 5 we will improve the signature verification complexity. The last
section will summarize our contribution to the multicast stream authentication problem.

2 Preliminaries

Definition 1. An [N, K]q systematic Reed-Solomon (SRS) code over the finite field
Fq (q > N) is a function:

C : (Fq × Fq)
K → (Fq × Fq)

N

{(i, yi)}i∈{1,...,K} �→ {(i, p(i))}i∈{1,...,N}

such that p is an element of Fq[X] of degree at most K with ∀i ∈ {1, . . . , K} p(i) = yi.
The rational K

N (< 1) is called the rate of the code.

The code is called systematic since the first K symbols of any codeword are its corre-
sponding message [9]. Given the K points {(i, yi)}i∈{1,...,K}, the polynomial p defined
above is unique. In order to deal with the attack of packet injections, we will list-decode
this SRS code using the Guruswami-Sudan decoder (GS-Decoder) developed in [7]. It
is based on the polynomial reconstruction problem, takes as input integers K, t, and
M couples of field elements {(x̃i, ỹi)}i∈{1,...,M}, and outputs the list of all univari-
ate polynomials p̃ of degree at most K such that ỹi = p̃(x̃i) for at least t values of
i ∈ {1, . . . , M}. It is shown in [7] that if t >

√
K M then the polynomial reconstruc-

tion problem could be solved in polynomial time. Then it has been deduced that any
[N, K]q Reed-Solomon code (systematic or not) with an error at most N − t could be
list-decoded using O(N2) field operations producing a list of O(1) candidates.

We consider the scenario where the sender has much larger computational memory
storage (to buffer a piece of the data stream) and computational abilities than the re-
ceivers. This illustrates most cases since, in general, the sender is a server delivering
data to personal computers.

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 111

In the fully adversarial model, the adversaryA can introduce packets into the chan-
nel, drop and rearrange some chosen original ones. Thus reliable transmission of the
signature is not possible since A would only need to drop the signature packet to make
the authentication scheme fail. Since the authentication problem is our major concern,
we assume that a reasonnable number of original packets reaches the receivers. Indeed
if too many packets are discarded or modified byA then the main problem becomes data
transmission since the small number of packets reaching the receivers would be useless
for their original purposes even authenticated. On the other hand if too many packets are
received then prevention against denial-of-service attacks becomes the main concern.
We split the stream into blocks of n packets and define two parameters:

•α (0 < α ≤ 1) : the survival rate. At least αn original packets are received
• β (β ≥ 1) : the flood rate. A maximum of βn packets reaches each receiver

We now breafly describe the scheme defined by Lysyanskaya et al. [8]. Let ρ be
the rate of the SRS code we will use. Since α2

β ∈ (0, 1] there exists ε > 0 such that:

ρ = α2

(1+ε) β . ε is called the tolerance parameter of the decoder. The choice of ρ will be
explained later. We use a signature scheme [22] (the key generator of which is Keygen)
and a collision-resitant hash function [19]. Each block of n packets has an identification
tag BID (representing its position within the whole stream). The authenticator Auth
first hashes each packet and signs the concatenation of BID together with the n hashes.
Then we form the authentication stream S which is the concatenation of the n hashes
and the signature. S is split into ρ n + 1 field elements over Fq where q = 2	 |S|

ρn+1

(after padding if necessary). S is encoded using the SRS[n, ρ n]q code giving n pieces
of signature. Each authenticated packet is the concatenation of BID, the packet position
within the block, the packet itself and the corresponding piece of signature.

From [7], we must have t >
√

K M to ensure the success of GS-Decoder. In our
case we have t = αn (minimum number of original packets arrived at the receiver end),
K = ρn and M = m (number of received packets (α n ≤ m ≤ β n)). Thus from the
inequality t >

√
K M we have β n > m

1+ε . So GS-Decoder can be run successfully
for our choice of ρ. Since ε has an impact on the success of that decoder we denote it:
GS-Decoderε. To fit the fact that our code is systematic we need to modify GS-Decoderε
before using it for authenticating packets.

MGS-Decoderε

Input: The number of packets per block n, the network characteristics α, β and m ele-
ments {(xi, yi), 1 ≤ i ≤ m}.
1. If m > βn or we have less than αn distinct values of xi then the algorithm rejects
the input.

2. Run GS-Decoderε on the m elements to get a list L of polynomials. Evaluate each
Qi(X) at 1, . . . , ρ n + 1 and concatenate these values to form ci.

Output: {c1, . . . , c|L|}: list of candidates.

112 C. Tartary and H. Wang

We notice that since α, β and ε are known, ρ can be easily computed. Thus there is
no need to consider it as an input. Now we describe the decoding algorithm Decoderε

used in [8]. After verifying that the number of packets with suitable BID and packet
numbering is between α n and β n, MGS-Decoderε is run to obtain a list of candidates
for signature verification. The list is processed until the signature is checked or the
whole list is exhausted. If the MGS-Decoderε rejects the input or the list is processed
in vain then the family of received packets is dropped. Otherwise (i.e. the signature has
been verified successfully) the good candidate is split as above (as the concatenation of
the BID and n hashes). Then each of the received packets is processed and we check
whether its hash matches one of the n ones. If so the corresponding packet is output as
authentic. We now describe the improvements we made on Lysyanskaya et al.’s scheme.

3 Our Protocol

Our work is an extension of the scheme described in Sect. 2 [8]. Since signatures are
time expensive to generate and verify, our idea is to compute one signature for a fam-
ily of λ blocks where each block consists of n packets. We assume that the sender
can buffer λn packets. Nevertheless our scheme works in such a way that a receiver
only needs to get enough packets from a block before verifying it (he does not have to
wait for the whole sequence). As the previous scheme, it will be joinable at any block
boundary. We need a collision-resistant hash function h as well as a signature scheme
(KeyGen, sign, verify) where KeyGen generates the private key SK and its corre-
sponding public key PK . We denote ·‖· the concatenation of two elements. Figure 1
gives a description of the sender’s work for the sequence of blocks {B1, . . . , Bλ}.

P 1
1 P n

1 P 1
λ P n

λ· · ·· · ·· · ·

� � � �
h1

1 hn
1 h1

λ· · · · · ·

τ1 = h1
1‖ · · · ‖hn

1 τλ = h1
λ‖ · · · ‖hn

λ

� �

[τ 1
1 , . . . , τn

1] [τ 1
λ, . . . , τn

λ]
SRS SRS� �· · ·

H1−λ = h(h(τ1)‖ · · · ‖h(τλ)‖FID)
�

σ = signSK(H1−λ)
�

τσ = h(τ1)‖ · · · ‖h(τλ)‖FID‖σ

�
[τ 1

σ , . . . , τn
σ]

SRS

AP 1
1 = FID‖1‖1‖P 1

1 ‖τ 1
1 ‖τ 1

σ APn
λ = FID‖λ‖n‖P n

λ ‖τn
λ ‖τn

σ

· · ·� �

· · · hn
λ

� �

� �
· · ·

B1 Bλ

Fig. 1. Authentication process of the extended scheme

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 113

We keep the same definitions for n, α, β, ρ and ε as before. Each family
{P 1

1 , . . . , Pn
λ } of λn packets of the stream has an identification tag FID represent-

ing its position within the whole stream. Each one of its blocks of n packets also has
a tag BID. Thus a packet is now identified within the stream by its position i within a
block BID belonging to the family FID, i.e. its identification number is (FID, BID, i).
We now describe the family authenticator AuthFamily which outputs the packets per
block of n elements.

AuthFamily
Input: The private key SK, the network characteristics α, β, a family {P 1

1 , . . . , Pn
λ }, its

FID and λ.

1. Within each block b we hash the n packets and concatenate them to form the block
tag τb. It is then encoded using the SRS code and we get (τ1

b , . . . , τn
b).

2. Hash the λ block tags and concatenate them together with FID. This concatenation
is hashed to get H1−λ which is signed to form σ using SK. The resulting signature is
encoded using the SRS code and we get (τ1

σ , . . . , τn
σ).

3. The λn authenticated packets are defined as AP p
b = FID‖b‖p‖P p

b ‖τp
b ‖τp

σ . As soon
as the n packets of a block are processed then the whole block is sent immediately.

Output: {AP 1
1, . . . , APn

λ}: set of authenticated packets sent per block of n packets.

In order to use the same SRS code, τσ and the τb’s (1 ≤ b ≤ λ) must be padded
appropriately. If we denote H the size of a hash, s the signature size and | · | the map-
ping giving the size of an element then |τb| = nH and |τσ| = λH + s + |FID|. In
our work we can assume that λ < n. Otherwise our scheme requires the sender to
buffer too many packets to preserve the live diffusion of data. We can also assume that
|FID| does not exceed the size of a hash. Thus we can assume that |τb| < nH + s and
|τb| < nH+ s. So we will use in both cases the SRS[n, ρ n]q code where q is the same
integer as in Sect. 2. Thus our extension does not increase the size of the field we work
with. τσ and τi’s are padded according to that finite field.

If we do not take into account the identification number then any packet’s tag is
τ i

BID‖τ i
σ which is the concatenation of 2 field elements. Once a generator of the exten-

sion Fq/F2 is chosen then any element of Fq requires log2(q) bits. So our tag is as large
as 2 log2(q) bits which is approximately 2

ρH bits. Since ρ < 1, the tag is sligthly larger
than two hashes produced by h.

Since each block carries the signature, it is sufficient to run the signature verifica-
tion process for family FID until one of its blocks makes the authentication process
successful. Therefore when a new block of packets is received, the receiver must react
differently whether the family signature has already been verified or not. We first design
the signature verification routine V erifySignatureFamily.

VerifySignatureFamily
Input: The public key PK, the network characteristics α, β, a set of pairs of field ele-
ments {(xi, yi), 1 ≤ i ≤ m}, the family FID and λ.

114 C. Tartary and H. Wang

1. Run MGS-Decoderε on {(xi, yi), 1 ≤ i ≤ m} to get a list L of candidates for the
family signature verification. If MGS-Decoderε rejects this input then the algorithm
stops.

2. While the signature has not been verified and the list L has not been exhausted,
we pick a new candidate h̃(τ1)‖ · · · ‖h̃(τλ)‖σ̃. If verifyPK(h(h̃(τ1)‖ · · · ‖h̃(τλ)‖FID), σ̃)
= TRUE then σ̃ is considered as the authentic family signature σ and the h̃(τi)’s are
memorized within the table HashBlock as the authentic hash blocks h(τi)’s. 3. If the
signature has not been verified then our algorithm stops.

Output: (σ, HashBlock): family signature and hashes of the λ blocks.

Now we describe our block decoder DecoderBlockε. The definition of the boolean
TestSignature is necessary because our scheme only checks the family signature until
it is verified by one block within the family FID. Once it has been done block hashes
are stored into HashBlock and only block authentications are performed. Let RP =
{R1, . . . , Rm} be the set of received packets.

DecoderBlockε

Input: The public key PK, the network caracteristics α, β, n, FID, BID, λ, a boolean
TestSignature, a table HashBlock and the set of received packets RP .

1. Write the packets as FIDi‖BIDi‖ji‖P ji

BIDi
‖τ ji

BIDi
‖τ ji

σ and discard those having
FIDi �= FID, BIDi �= BID or ji /∈ {1, . . . , n}. Denote m′ the number of remaining
packets. If m′ < α n or m′ > β n then the algorithm stops.
2. If (TestSignature = TRUE) then go to step 3. Otherwise run VerifySignatureFamily
on the m′ remaining points. If it rejects the input then the algorithm stops. Otherwise
set TestSignature = TRUE
3. Run MGS-Decoderε on the set {(ji, τ

ji
σ), 1 ≤ i ≤ m′} and get a list L of candidates

for block tag verification. If MGS-Decoderε rejects that set then the algorithm stops.
4. While the block BID has not been verified and the list L has not been exhausted, we
pick a new candidate c̃ := h̃1

BID‖ · · · ‖h̃n
BID. If (h(c̃) = HashBlock(BID)) then the tag

of block BID is verified and we set hj
BID = h̃j

BID for j ∈ {1, . . . , n}. If L is exhausted
without a successful block tag verification then the algorithm stops.
5. For i ∈ {1, . . . , n}, set P ′i

BID = ∅. For each packet of RP (written as
Ri

BID = FID‖BID‖j‖P j
BID‖τ j

BID‖τ j
σ where j ∈ {1, . . . , n}) if h(P j

BID) = hj
BID then

P ′j
BID = P j

BID.

Output: {P ′1
BID, . . . , P ′n

BID}: set of identified packets.

After step 1 the remaining m′ packets are renumbered as {R1
BID, . . . , Rm′

BID} where
Ri

BID = FID‖BID‖ji‖P ji

BID‖τ ji

BID‖τ ji
σ . When we enter step 4 the table HashBlock is full

since the family signature has been verified.
Since a single signature is created per family of λ blocks, one might think that our

scheme is only joinable at a family boundary. Nevertheless
[
τ1
σ , . . . , τn

σ

]
is present

within each bock of n packets the sender emits. Thus any receiver can join the com-
munication group at any block boundary as in [8].

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 115

Since the families of λ blocks are independant from each other, the security of our
scheme relies on the security of a family of λ blocks. Similar to [8], we give the follow-
ing definition.

Definition 2. (KeyGenerator, Authenticator, Decoder) is a secure and (α, β)-cor-
rect multicast authentication scheme if no probabilistic polynomial-time adversary A
can win with a non-negligible probability to the following game:

i) A key pair (SK, PK) is generated by KeyGenerator.
ii) A is given: (a) The public key PK and (b) Oracle access to Authenticator (but

A can only issue at most one query with the same family identification tag FID).
iii) A outputs (FID, n, α, β, RP).

A wins if one of the following happens:

a) (violation of the correctness property) The adversary succeeds to output RP such
that even if it contains αi ni packets of some authenticated packet set AP i for family
identification tag FIDi = FID and block identification tag BIDi = BID, the decoder
still fails at authenticating some of the correct packets.

b) (violation of the security property) The adversary succeeds to output RP such that
the decoder outputs {P ′1

BID, . . . , P ′n
BID} (for some BID) that were never authenticated

by Authenticator (as a part of a family of λ blocks) for the family tag FID.

Lysyanskaya et al. [8] showed that their scheme (Keygen, Auth, Decoderε) was se-
cure and (α, β)-correct. Following their arguments, we obtain the following result for
our scheme.

Theorem 1. The authentication scheme (KeyGen, AuthFamily, DecoderBlockε) is se-
cure and (α, β)-correct.

Proof. Suppose that our scheme is neither secure nor (α, β)-correct. By definition an
adversaryA can break the scheme with a non-negligible probability P(k). We have:

P(k) = p({the scheme is not (α, β)-correct or unsecure})
= p({the scheme is not (α, β)-correct} ∪ {the scheme is unsecure})

Since p is a measure, we deduce that one of the following two cases is true:

p({the scheme is not (α, β)-correct}) ≥ P(k)
2

(1)

p({the scheme is unsecure}) ≥ P(k)
2

(2)

Point (1). If a polynomial-time adversaryA breaks the (α, β)-correctness of the scheme
then the digital signature scheme can be forged. This will be proved by turning an at-
tack breaking the (α, β)-correctness into an attack against the signature scheme. For
this attack, A has access to the signing algorithm signSK (but not SK itself), can use
the public signature key PK and the cryptographic hash function h. He is also able
to run the authentication scheme AuthFamily. The queries made to it are written as
(FIDi, λi, ni, αi, βi, DP i) where DPi is the set of λi ni data packets to be authenti–

116 C. Tartary and H. Wang

cated. In order to get the corresponding output, the signature is obtained by querying
signSK within the authenticator. Following this process, A is able to break the scheme
correctness since he got values FID, λ, n, α, β and a set of received packets RP BID (for
some BID ∈ {1, . . . , λ}) such that:

• ∃i / (FID, λ, n, α, β) = (FIDi, λi, ni, αi, βi).
Denote DP = {P 1

1 , . . . , Pn
λ }(= DP i) the data packets associated with this query

and AP the response given to A. In particular we denote σ = signSK(H1−λ) where
H1−λ = h(h(τ1)‖ . . . ‖h(τλ)‖FID) with ∀j ∈ {1, . . . , λ} τj = h(P 1

j)‖ . . . ‖h(Pn
j).

• |RP BID ∩AP | ≥ nα and |RP BID| ≤ β n.
• (P ′1

BID, . . . , P ′n
BID) = DecoderBlockε(PK, FID, BID, n, α, β, TestSignature, Hash-

Block, RP BID) where for some j such that Rj
BID ∈ RP we have P j

BID �= P ′j
BID with:

Rj
BID = FID‖BID‖j‖P ′j

BID‖τ j
BID‖τ j

σ .

Since DecoderBlockε first checks the family signature and second outputs packets,
TestSignature can take two different values (each of them involves a specific value of
HashBlock). ThusA must be able to succeed in both following cases:

A. The set RP BID is used to verify the signature
B. The signature of the family has already been checked

Case B illustrates the event when the receiver has already verified the family signa-
ture when he receives fake packets introduced byA.

Case A. Since the set RP BID verifies the signature, the query 3 above gives us a can-
didate c′ = h′

1‖ . . . ‖h′
λ‖σ′ with verifyPK(h(h′

1‖ . . . ‖h′
λ‖FID), σ′) = TRUE. We have

to prove that signSK was not run on the input h(h′
1‖ . . . ‖h′

λ‖FID). This is proved in
[8]. Here we have a slight difference. That is, we have h(h′

1‖ . . . ‖h′
λ‖FID) whereas [8]

deals with h′
1‖ . . . ‖h′

λ‖FID. As h is collision resistant, this difference is not a problem.

Case B.Now we consider that the signature has previously been verified. That is the
receiver has buffered h′

1, . . . , h
′
λ and σ′ such that verifyPK(h(h′

1‖ . . . ‖h′
λ‖FID), σ′) =

TRUE. We have two possibilities: P ′j
BID �= ∅ or P ′j

BID = ∅.
• Sub-case B1: P ′j

BID �= ∅. Since h is collision-resistant, we have
h(P ′j

BID) �= h(P j
BID). Since P ′j

BID is a non-empty part of a received packet, the decod-
ing algorithm DecoderBlockε outputs a candidate c′BID = h′1

BID‖ . . . ‖h′n
BID such that

h′
BID = h(h′1

BID‖ . . . ‖h′n
BID). Moreover DecoderBlockε includes P ′j

BID into the output
packets if and only if h(P ′j

BID) = h′j
BID. Remember that h(P ′j

BID) �= h(P j
BID). We get:

h(P ′1
BID)‖ . . . ‖h(P ′j

BID)‖ . . . ‖h(P ′n
BID) �= h(P 1

BID)‖ . . . ‖h(P j
BID)‖ . . . ‖h(Pn

BID).
Since h is a collision-resistant we get: h′

BID �= hBID and for the same reason:
h(h(P ′1

BID)‖ . . . ‖h(P ′j
BID)‖ . . . ‖h(P ′n

BID)) �= h(h(P 1
BID)‖ . . . ‖h(P j

BID)‖ . . . ‖h(Pn
BID))

Thus the digital signature is not secure.
• Sub-case B2: P ′j

BID = ∅. Due to the consistency of MGS-Decoderε
(see [8]), DecoderBlockε will include the candidate value c = h1

BID‖ . . . ‖hn
BID. By

definition h(c) = hBID, so the decoder cannot provide (h′1
BID, . . . , h′n

BID) = (∅, . . . , ∅).
If (h′1

BID, . . . , h′n
BID) = (h1

BID, . . . , hn
BID) then the design of DecoderBlockε involves

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 117

that P ′j
BID = P j

BID be non-empty and Rj
BID is a received packet. In order to avoid

this contraction, we must have (h′1
BID, . . . , h′n

BID) �= (h1
BID, . . . , hn

BID). Nevertheless
h(h′1

BID‖ . . . ‖h′n
BID) = hBID which is impossible since h is collision-resistant. Thus

we get a contradiction.

Point (2). If a polynomial-time adversaryA breaks the security property of the scheme
than the underlying signature scheme is not secure. We consider the same kind of
scheme as in point (1). A will succeed if one of the following will hold:

A. AuthFamily was never queried on input FID, λ, n, α, β, DP and the decoding
algorithm DecoderBlockε does not reject it, i.e. OP BID �= ∅ where
OP BID = DecoderBlockε(PK, FID, BID, n, α, β, RP BID) with BID ∈ {1, . . . , λ}.
B. AuthFamily was queried on input FID, λ, n, α, β, DP . However some non-empty
output packet P ′j

BID is different from P j
BID where OP BID = {P ′1

BID, . . . , P ′n
BID} and

DP = {P 1
1 , . . . , Pn

λ } for some BID ∈ {1, . . . , λ}.
Case A. Due to the design of DecoderBlockε, the only possibilities to output non-empty
packets were either (exhibiting a valid signature and valid hashes for block BID) or
(valid hashes for block BID which are consistant with the signature and block hashes
already buffered)

• Sub-case A1: Because we exhibit a valid signature, the MGS-Decoderε has output an
element c′ = h′(τ1)‖ . . . ‖h′(τλ)‖σ′ such that verifyPK(h(h′(τ1)‖ . . . ‖h′(τλ)‖FID), σ′)
= TRUE. Since AuthFamily was never queried with FID, neither does verifyPK. Thus
σ′ is a successful forgery, that is the signature scheme is not secure.
• Sub-case A2: Denote σ and h(τ1), . . . , h(τλ) the valid signature and its correspond-
ing tags of blocks. Since P ′j

BID �= P j
BID we deduce: h(P ′j

BID) �= h(P j
BID) because h

is collision-resistant. For the same reason h(τ ′
BID) �= h(τBID). We get a contradiction

since outputing packets involves h(τ ′
BID) = h(τBID). We notice that even if we do not

know all P ′i
BID’s (some can be empty), the hash h(τ ′

BID) is known thanks to VerifySig-
natureFamily.

Case B. Here we have the same situation as point (1) case A and sub-case B2. We get a
contradiction with the security of the signature scheme. ��

Thus our modifications do not weaken either the security or the correctness of the
technique developed in [8]. In order to compare our protocol to those relying on the
same principle, namely signature dispersion, we need to compute its cost.

AuthFamily requires λ (n + 1) + 1 hashes, 1 signature generation and, based on the
analysis of Lysyanskaya et al.’s scheme, O(λn log n) field operations over Fq.

DecoderBlockε is more complex to analyze since its complexity depends on the
block used to successfully verify the family signature. First we compute the cost gen-
erated by one block, say b (1 ≤ b ≤ λ), assuming that we received k packets where
k ≤ β n and at least αn with right numbering. In the following the field is the one used
for the SRS code. We have two cases:

1. The signature of the family has not been verified yet. MGS-Decoderε is run in O(n2)
field operations and outputs a list of O(1) signature candidates. We compute one hash
and one signature verification for each of them until the signature be verified. So there

118 C. Tartary and H. Wang

is a total of O(n2) field operations, O(1) hashes and O(1) signature verification.
2. The signature of the family has already been verified. MGS-Decoderε is run as above.
Each element of the list is hashed. Then O(k) hashes are computed to authenticate the
packets. Since k ≤ βn and β is constant we have k = O(n). So there is a total of O(n2)
field operations and O(n) hashes.

Consider the whole family of λ blocks. We notice that block authentications are only
processed after a successful signature verification. Denote B the block which verifies
the family signature. From block 1 to B − 1 only unsuccessful signature verifications
are performed (case 1). For block B one successful verification and one block authenti-
cation are performed (both cases). For block B + 1 to λ only block authentications are
performed (case 2). We deduce the cost of the group of λ blocks:

O((B − 1)n2 + n2 + (λ− (B + 1) + 1)n2) field operations
O(B − 1 + n + 1 + (λ− (B + 1) + 1)n) hashes
O(B − 1 + 1) signature verifications

So we have O(λn2) field operations, O(B + (λ−B)n) hashes and O(B) signature
verifications. We notice that the field operations complexity does not depend on the
block B. We also have B ≤ λ, so B = O(λ). Therefore we have O(λn) hashes and
O(λ) signature verifications. Nevertheless this kind of approximation is not relevant
since the number of hashes depends on the signature verifications performed. Assuming
B = O(λ), we lose this dependance and therefore get two "upper bounds" which are
not reached at the same time.

4 Comparison of Signature Dispersion-Based Schemes

Complexity Comparison. Our scheme relies on signature dispersion so we will com-
pare it to SAIDA, eSAIDA, linear equations scheme and the Lysyanskaya et al.’s one.
We will not consider erasure codes from [12] since they do not specify a particular
class of codes. Thus we cannot evaluate the complexity of this technique. The results
of Table 1 are built based on the definitions found in [13, 14, 15, 1, 8] where SAIDA, e-
SAIDA, linear equations scheme and Lysyanskaya et al.’s scheme are iterated λ times.

We notice that the approach of [8] is much more efficient than the other three schemes
on every category but signature verification. Nevertheless this is where its strength
against packet loss is. So we can say that it is the most efficient technique using sig-

Table 1. Cost for signature dispersion-based schemes

Sender Receiver
Field Op. Hash Signature Field Op. Hash Sign. Verif.

SAIDA O(λn2) λ(n + 1) λ O(λn2) O(λn) λ

e-SAIDA O(λn2) λ(3n
2 + 1) λ O(λn2) O(λn) λ

Linear Equations O(λn3) λ(n + 1) λ O(λn2) O(λn) λ

Lysyanskaya et al.’s Scheme O(λn log n) λn λ O(λn2) O(λn) O(λ)
Our Scheme O(λn log n) λn + λ + 1 1 O(λn2) O(λn) O(λ)

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 119

nature dispersion (amongst those quoted above). So our focus is to compare it (when
iterated λ times) to our technique. At the receiver the complexities of both schemes
seem to be equivalent but bounds (for our work) concerning hashes and signature ver-
ifications are linked together and their exact values are smaller (see Sect. 3). So the
complexity at the receiver is slightly better for our scheme. In Sect. 5 we will define a
property for the rates α and β allowing O(1) for signature verification. At the sender we
experiment the same field operations complexity but our technique computes a single
signature whereas the other scheme generates λ of them. This is at the cost of λ + 1
more hashes computations. As said before generating a digital signature is more time
expensive than computing a hash. Since a hash function takes inputs of any length,
the time spent hashing the extra quantity generated by our scheme will be more rele-
vant than the number of extra hashes itself to get an approximation of the gain provided.

Threshold Values. DenoteH the size of a hash (in bytes), th is time needed to hash one
byte and ts the time needed to produce one signature (both th and ts must be expressed
in the same unity). The extra (λ + 1) hashes are h(τ1), . . . , h(τλ) and H1−λ. We have:
∀i ∈ {1, . . . , λ} |τi| = nH and |h(τ1)‖ · · · ‖h(τλ)‖FID| = λH + |FID|. If we assume
that |FID| is negligible with respect toH then the size of the extra quantity to be hashed
is (n + 1)λH. Since our scheme experiences (λ − 1) less signatures we deduce that it
is the faster one if and only if:

(n + 1)λH th < (λ− 1) ts ⇐⇒
(

1− (n + 1)H th
ts

)
λ > 1 (3)

DenoteK := 1− (n+1)H th

ts
. IfK < 0 then λ < 1/K. This upper bound is logical.

Indeed K < 0 means ts < (n + 1)H th. Since th is small (in comparison to ts) andH
not too large, this configuration happens when n is large enough. In that case we have a
lot more hashes per block. Thus if λ is too large then it is faster to compute one signature
per block than all the extra hashes plus the family signature. We are interested in the
case where n is reasonable and so K > 0. Since λ > 1

K we define Λ := 	 1
K
 (which

depends on n). We implemented the mapping n �→ Λ(n) with different hash functions
(MD5, SHA-1, SHA-256, RIPEMD-160 and Panama Hash (little and big endian)) and
signature schemes (RSA, DSA (both produce a 1024-bit signature) and ESIGN (1023
bits)). The graphs are depicted as Fig. 2.

When Perrig et al. implemented EMSS [17, 18], one signature packets was sent every
1000 ones. Park and Cho [15] used n = 200 and n = 512 to implement both SAIDA
and eSAIDA. Figure 2 shows that Λ = 2 when n is up to 1000 for our choice of hash
functions and signature schemes.

Once Λ has been chosen as on Fig. 2 we determine the gain in term of proportion
of extra packets per block our scheme provides. That is, once λ ≥ Λ and n are fixed
((3) being checked) we determine n−ñ

n where ñ is defined such that proccessing a fam-
ily of λ ñ packets with our technique is as time consuming as λ consecutive iterations
of Lysyanskaya et al.’s one with n packets per block. We also want to compute the
gain of our model with respect to the schemes previously quoted. As before we need
to determine the time spent at the sender for both schemes (|FID| will be considered as
negligible). We denote P the size of a packet (in bytes). Results are shown in Table 2.

120 C. Tartary and H. Wang

0 1 2 3 4 5 6

x 10
4

10
0

10
1

10
2

10
3

10
4

Approximation of the minimal bound

n

Λ

MD5 − RSA
MD5 − DSA
MD5 − ESIGN
PHL − RSA
PHL − DSA
PHL − ESIGN
PHB − RSA
PHB − DSA
PHB − ESIGN

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
10

0

10
1

10
2

10
3

10
4

Λ

n

Approximation of the minimal bound

SHA1 − RSA
SHA1 − DSA
SHA1 − ESIGN
SHA256 − RSA
SHA256 − DSA
SHA256 − ESIGN
RIP − RSA
RIP − DSA
RIP − ESIGN

(b)
Fig. 2. computations of Λ for our different signature schemes and hash functions

Table 2. Time at the sender

Our Extension Lysyanskaya et al.’s Scheme Linear Equations SAIDA e-SAIDA
(λ times) (λ times) (λ times) (λ times)

λ[n(P + H) + H]th + ts λ(n P th + ts) λ[n(P + H)th + ts]

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 121

Thus it is sufficient to study Lysyanskaya et al.’s scheme and SAIDA. Denote
T λ,n

EX , T λ,n
LY , T λ,n

SAIDA the time spent at the sender for our protocol, Lysyanskaya et al.’s
technique and SAIDA respectively with λ blocks of n packets each. We want to deter-
mine the minimal integersNLY and NSAIDA such that:

∀N ≥ NLY T λ,N
EX > T λ,n

LY and ∀N ≥ NSAIDA T λ,N
EX > T λ,n

SAIDA

This is equivalent to:

NLY =

⌈
P

P +H n +
(1− 1

λ) ts

th
−H

P +H

⌉
and NSAIDA =

⌈
n +

(1− 1
λ) ts

th
−H

P +H

⌉
Nevertheless (3) must be checked. It can be proved that if the above two numbers do not
check that equation then none does (the proof relies on the minimality of these integers).
So we define the following two integers and then the gain for each scheme:

nLY =

⎧⎨⎩
⌈

P
P+H n +

(1− 1
λ) ts

th
−H

P+H

⌉
if (3) is checked

is not defined otherwise

nSAIDA =

⎧⎨⎩
⌈
n +

(1− 1
λ) ts

th
−H

P+H

⌉
if (3) is checked

is not defined otherwise

The gains are defined as:

GLY = 1− n

nLY
and GSAIDA = 1− n

nSAIDA

Perrig et al. [17] and Pannetrat and Molva [12] attempted to solve two particular
cases. They had two different packet sizes: 64 and 512 bytes. We chose the same ones
and used MD5 (as hash function) and RSA (as signature scheme). Our results indicate
that when λ is fixed, increasing the number of packet per block n makes the benefit
decrease in all cases. This observation is consistant with what we noticed in Sect. 4.
Table 3 gives us an approximation of the gain provided by our scheme for P = 64. The
value of λ is not precised since it appeared not to have an important impact on the gain.

Our results also showed that when n was small then the gains were close to 1. Re-
member that λ is fixed (so that (3) is checked). When n becomes small (i.e. the block
size decreases) Lysyanskaya et al.’s technique and SAIDA "tends to" be similar to the
sign-each approach scheme (where each packet carries its own signature) whereas our
scheme "tends to" be similar a block signature scheme (with λ packets). This justifies
the important gain we earn for these values of n. Our observations also indicated that
when λ and n were fixed then increasing the packet size P (from 64 to 512 bytes) made
the gain provided by our scheme decrease.

Table 3. Approximation of threshold values about n for GLY and GSAIDA when P = 64

10% 25% 50% 75% 90%
GLY 45700 25700 11500 2800 1400

GSAIDA × 40000 13300 4700 1900

122 C. Tartary and H. Wang

5 Improvements on the Signature Verification Complexity

Accuracy of the Parameters. The signature verification complexity is O(λ) for our
scheme which is the same as Lysyanskaya et al.’s (when their technique is iterated λ
times). We present a modification of our approach which allows to have O(1) instead
under some assumptions. We need to introduce the following definition.

Definition 3. We say that a couple (A, B) of survival and flood rates is accurate to the
network for a flow of N symbols if: (1) data are sent per block of N elements through
the network and (2) for any block of N elements {E1, · · · , EN} emitted by the sender,
if we denote {Ẽ1, . . . , Ẽμ} the set of received packets then μ ≤ BN and at least AN

elements of {E1, · · · , EN} belong to {Ẽ1, . . . , Ẽμ}. Condition (2) must be true for
each receiver belonging to the communication group.

Remark: We notice that, when N is fixed, (A, B) is not unique. Indeed any (Ã, B̃) with
B̃ ≥ B and 0 < Ã ≤ A is also accurate for the same flow N .

In our case, we have N = n (see step 3 of AuthFamily). We have the following
proposition:

Proposition 1. If (α, β) is accurate then any set of received packet verifies the family
signature using O(1) signature verifications.

Proof. Denote FID the family number. Assume that we receive a set RP of packets
for some block number BID where BID ∈ {1, . . . , λ}. Since (α, β) is accurate, we
have |RP| ≤ βn and at least αn packets of RP come from the sender. Denote SRP that
subset of RP and CRP the subset of RP consisting of elements having correct numbering
(FID, BID, ψ) where ψ ∈ {1, . . . , n}. We have: SRP ⊂ CRP ⊂ RP so: αn ≤ |SRP| ≤
|CRP| ≤ |RP| ≤ βn.

We will prove that RP verifies the signature by running VerifySignatureFamily with
CRP as input. In step 1, a request to run MGS-Decoderε on CRP is executed. The
above inequalities prove that CRP is not rejected and a list of size O(1) is output by
MGS-Decoderε. Due to its consistency (see [8]), h(τ1)‖ · · · ‖h(τλ)‖σ must belong to
that list where σ is the signature and h(τi) the hash of the ith original block created
by the sender for the family FID. Therefore step 2 of VerifySignatureFamily will be
successful after at most O(1) signature verifications (step 3 is not executed). Thus RP
verifies the family signature. �

We deduce the following theorem:

Theorem 2. If (α, β) is accurate then the complexity of signature verification is O(1).

Proof. Denote FID the family number. Assume that we receive a set RP of packets for
some block number BID (BID ∈ {1, . . . , λ}). We run Decoderε on RP. Its design indi-
cates that once the family signature has been verified for some set R̃P, no more signature
verifications are performed for FID. Since (α, β) is accurate, we can apply Proposi-
tion 1. Therefore signature verifications for FID are only computed for the first received
set R̂P for this value FID. Thus if RP = R̂P then O(1) signature verifications are per-
formed, else no signature verifications are computed. This involves that only O(1) sig-
nature verifications are performed for FID. Since no specific values have been assigned
to FID, we get our result. �

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 123

Limitations. In practical applications, it is difficult to find a couple (α, β) which is
accurate and realistic due to the large number of receivers (potentially several tens of
thousands). Using the remark following Definition 3, we can say that if α is "close to"
0 and β "large enough" then (α, β) is accurate for a flow of n. The drawback is that the
length of the tag τ i

BID‖τ i
σ appended to each packet is approximately 2

ρ H (see Sect. 3)

where ρ = α2

(1+ε) β . That is, this tag is around β
α2 (2 (1 + ε)H) large. If the sender

chooses unrealistic values as α = 1
10 and β = 5 then we get: β

α2 = 500. So the tag is
larger than 1000 hashes produced by h (since ε > 0). This creates too large an overhead
per packet for distribution in the network. The previous values were called "unrealistic"
because this choice of (α, β) means that at least 10% of the original packets and a total
of no more than 5n packets are received. If these values were really accurate then it
would mean that the opponent would have a very huge control over the network and the
few packets the receivers would authenticate would be probably useless.

If the number of receivers is relatively small then each of them can send back a
report of the transmission consisting of his own (αi, βi). Thus the sender can adjust
(α, β) which will be accurate for further transmission as α = min

i
αi and β = max

i
βi.

Nevertheless this approach is impracticable when the size of the communication group
increases. In this case the sender has to choose a couple (α̃, β̃) which seems suitable
for a large proportion of receivers (for instance 95%) but which is not guaranteed to
be accurate for all of them. Therefore 95% of the receivers will have O(1) as signature
verification complexity whereas the other ones will experience O(λ) due to potential
rejects of received packets by Decoderε.

6 Conclusion

In [8], Reed-Solomon codes were used to solve the multicast authentication problem in
the fully adversarial network. Extending this approach, we designed a scheme where a
single signature is computed for every family of λ blocks of n packets. Our technique
still allows any receiver to join the communication group at any block boundary. The
complexity at the receiver (in term of signature verifications and hash computations) is
better than the complexity of λ iterations of Lysyanskaya et al.’s protocol. In particular,
when the sender has knowledge of an accurate couple (α, β) for most receivers, the
complexity of signature verification for a family of λ blocks becomes O(1) (for these
participants) which is the complexity of Lysyanskaya et al.’s technique for 1 block only.

The minimal value, Λ, of λ such that our extension is the faster one at the sender
remains small. For instance Λ = 2 up to n = 30000 for RSA and MD5. Thus the extra
requirements consisting of buffering λn packets is quickly amortized. Since packets
are sent and authenticated per block, the throughput of data within the network does not
vary too much. Our technique also allows joinability at any block boundary since the
family signature is spread into every block. Therefore the size of the communication
group can grow even after the beginning of data transmission. The gain provided by
our technique is larger than 50% of extra packets per block with respect to SAIDA,
eSAIDA, Lysyanskaya et al.’s and linear equations protocols up to n = 11500. This
large value of n should be sufficient for most live applications.

124 C. Tartary and H. Wang

What remains to design is a technique allowing a single signature to be computed
for the whole stream respecting the property of joinability. Indeed in our work, Reed-
Solomon codes are used to deal with opponent’s malicious actions but we still need to
compute one signature every λ blocks to achieve the non-repudiation and joinability
property. If such a process exists then it will also be faced with the fully adversarial
network model where the opponent can drop a certain amount of chosen data packets.

References

[1] M. Al-Ibrahim and J. Pieprzyk. Authenticating multicast streams in lossy channels using
threshold techniques. In ICN 2001, LNCS 2094. Springer - Verlag, July 2001.

[2] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Asiacrypt
2001. Springer-Verlag, December 2001.

[3] Y. Challal, H. Bettahar, and A. Bouabdallah. A taxonomy of multicast data origin authen-
tication: Issues and solutions. In IEEE Communications Surveys and Tutorials, volume 6,
October 2004.

[4] Y. Challal, A. Bouabdallah, and H. Bettahar. H2A: Hybrid hash-chaining scheme for adap-
tive multicast source authentication of media-streaming. In Computer & Security, vol-
ume 24, February 2005.

[5] R. Gennaro and P. Rohatgi. How to sign digital streams. In Proceedings of the 17th Annual
International Cryptology. Springer-Verlag, August 1997.

[6] P. Golle and N. Modadugu. Authenticating streamed data in the presence of random packet
loss. In NDSS 2001. Internet Society, February 2001.

[7] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In IEEE Trans. Info. Theory, May 1999.

[8] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos. Multicast authentication in fully
adversarial networks. In IEEE Symposium on Security and Privacy, November 2003.

[9] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[10] R. Merkle. A certified digital signature. In Crypto’89. Springer - Verlag, 1989.
[11] S. Miner and J. Staddon. Graph-based authentication of digital streams. In IEEE Sympo-

sium on Security and Privacy, May 2001.
[12] A. Pannetrat and R. Molva. Authenticating real time packet streams and multicasts, July

2002.
[13] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast packet authentication using

signature amortization. In IEEE Symposium on Security and Privacy, May 2002.
[14] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast stream authentication using

erasure codes. In ACM - TISSEC, volume 6, May 2003.
[15] Y. Park and Y. Cho. The eSAIDA stream authentication scheme. In ICCSA, April 2004.
[16] V. Paxson. End-to-end Internet packet dynamics. In IEEE/ACM Transactions on Network-

ing, June 1999.
[17] A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient authentication and signing of multi-

cast streams over lossy channels. In IEEE Symposium on Security and Privacy, May 2000.
[18] A. Perrig and J. D. Tygar. Secure Broadcast Communication in Wired and Wireless Net-

works. Kluwer Academic Publishers, 2003.
[19] J. Pieprzyk, T. Hardjono, and J. Seberry. Fundamentals of Computer Security. Springer,

2003.
[20] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault

tolerance. In Journal of the Association for Computing machinery, volume 36, April 1989.

Efficient Multicast Stream Authentication for the Fully Adversarial Network Model 125

[21] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authentication.
In CCS’99, 1999.

[22] D. R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.
[23] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. In IEEE/ACM

Transactions on Networking, volume 7, August 1999.
[24] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measurement and modeling of the temporal

dependence in packet loss. In IEEE Infocom. IEEE Press, 1999.

Elastic Security QoS Provisioning for
Telematics Applications�

Minsoo Lee, Sehyun Park��, and Ohyoung Song

School of Electrical and Electronics Engineering, Chung-Ang University,
221, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
lemins@wm.cau.ac.kr, {shpark, song}@cau.ac.kr

Abstract. In the vision of 4G networks there is a strong demand for
universal wireless access and ubiquitous computing through consistent
personal and terminal mobility supports. The ability to provide seam-
less and adaptive QoS guarantees is key to the success of 4G systems.
This paper proposes the novel concept of the elastic security QoS provi-
sioning and the autonomous context transfer scheme in the future wire-
less networks, taking into account the specific requirements for highly
dynamic vehicular users. We designed Mobile Manager that can make
the autonomous and user transparent decision for the context-aware se-
cure handover. To demonstrate the effectiveness of the proposed security
mechanism, we also analyze the performance of our handover scheme by
using the multi-class queuing network model. Our scheme can obtain the
performance improvement of seamless security services and can be used
as an intelligent add-on model to existing networking systems like mo-
bile networks for telematics applications and home networks for efficient
mobility-aware applications.

Keywords: 4G, context transfer, home networks, mobility management,
security, telematics, ubiquitous computing.

1 Introduction

In recent years there has been increasing demands for intelligent and autonomous
services in universal wireless access and ubiquitous computing through seamless
personal and terminal mobility. The most popular communication service for
moving vehicles is currently provided by cellular networks at relatively low data
rate. In the vision of 4G networks the demand for telematics applications in vehi-
cles will rise steeply over the next few years with navigation services, emergency
call, telephone, and becoming increasingly popular choices among motorists.
Seamless security, mobility, QoS management are required for mobile users of-

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the Chung-Ang University HNRC(Home Network Research
Center)-ITRC support program supervised by the IITA(Institute of Information
Technology Assessment).

�� The corresponding author.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 126–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Elastic Security QoS Provisioning for Telematics Applications 127

ten equipped with several wireless network technologies, for example, wireless
local area networks (WLANs), 3G cellular networks and wireless metropolitan
area networks (WMANs).

In order to provide secure telematics applications over the heterogeneous net-
works, it is necessary to create a secure vertical handover protocol: a secure
handover protocol for users that move between different types of networks[1].
Traditional operations for handover detection policies, decision metrics, and ra-
dio link transfer are not able to adapt to dynamic handover criteria or react
to user inputs and changing network availabilities. Nor are they able to deliver
context-aware services or ensure network interoperability.

The success of telematics applications in 4G systems may strongly depend
on the ability to provide seamless security QoS. There has been a consider-
able amount of QoS research recently. However, the main part of this research
has been in the context of individual architectural components, and much less
progress has been made in addressing the issue of an overall QoS architecture
for the mobile Internet[2]. The seamless communication environments require a
variety of context such as user identity, current physical location, time of day,
date or season, and whether the user is driving or walking.

However, the context information is difficult to manage, because the amount
of context information can be enormous and location dependent. This context
information can be either dynamic or static. The context information should
be distributed in both networks and mobile terminals. Sometimes, wireless link
may be the bottle neck for the context exchange. For these reasons, mobility
management in heterogeneous wireless networks requires more adaptive and au-
tonomous techniques.

When the handover occurs, the Mobile Node (MN) and the Access Router
(AR) need to exchange keys and authenticate each other. This process is time-
consuming and creates a significant amount of signaling. To minimize the need
to signal over the wireless link, context transfer mechanism could be one so-
lution[3][4]. In the absence of the context transfer, multiple message exchanges
are required between these entities before the MN is authorized to access the
network. This delay could be very large, especially if the AAA server resides far
away from the new access networks[5][6].

In this paper, we propose an efficient context transfer mechanism between
Mobile Managers, minimizing the signaling overhead after the handover event
at layer 2. Our mechanism provides the appropriate and necessary context for
seamless secure vertical handovers. We also designed the detailed context trans-
fer procedure for secure telematics applications. We analyzed the handover per-
formance of our context-aware secure roaming with context transfer in mobile
networks by using a multi-class queuing network model.

The rest of this paper is organized as follows. Section 2 describes the fast han-
dover with mobility prediction and context transfer in mobile networks. Section 3
suggests our context transfer framework for telematics applications. Section 4
describes performance analysis of our context-aware handover through a closed
queuing network model. Section 5 concludes this paper.

128 M. Lee, S. Park, and O. Song

2 Fast Handover with Context Transfer in Mobile
Networks

In the 4G networks, the mobile users will be seamlessly served with tracking and
navigation services, emergency call, telephone and multimedia services. However,
the highly dynamic mobility of the vehicles brings about new research challenges
because of the heterogeneities of access technologies, network architectures, pro-
tocols and various service demands of mobile users. The seamless secure mobility
and QoS management should be considered to fulfill the promising future telem-
atics applications.

For adaptive QoS management, the location information will play a vital
role in defining context-awareness. Intuitively, it is clear that successful mobility
prediction can lead to fully automated activation of handovers.The mobility
prediction is possible by validating location history[7], by trajectory[8], by road
topology[9], by the handover statistics[10] of other vehicles, by the profiles[17],
by the direction to the destination of a vehicle, by the map of mobile networks
(network coverage, handover region).

Primary motivation of our context transfer protocol with mobility prediction
is to quickly re-establish context transfer candidate services without requiring
the MN to explicitly perform all protocol flows for seamless security services.

If mobile users can get location information without margin of error and
handover area (y) is fixed, an optimal point of time (tf) to forward indication
for setting the next context transfer zones is equal to average context transfer
time (Tp) from the MN to new AR through a Location Manager. In this case,

V1 = 40 km/h

(constant)

Tp

t

d
df1 df3

(x)

V2 = 120 km/h

(constant)

df2 df1' df2'

Mobility Prediction

Context transfer or

Full authentication

0
(y)

df3'

(x’)

1-p

p

Fig. 1. Setting security context transfer zones in consideration of margin of error

Elastic Security QoS Provisioning for Telematics Applications 129

Cell 1 Cell 2
cell overlap

time

t t+x tcp = 2

V

(km/h)

tcp (sec)

54

90

cell overlap = 50 m

cell overlap = 30 m

(a) (b)

Fig. 2. Relationship among cell overlap, context transfer time and speed (a) cell over-
lap region and context transfer time (b) maximum velocity according to the context
transfer time and cell overlap regions (tcp = 2)

when a MN moves at a constant speed of 40 km/h as shown in Figure 1, setting
for the next context transfer zones begins at df � vTp. For example, if Tp is 2
sec and MN’s speed (v) is 40 km/h, the MN begins setting up the next context
transfer zones 22.2m ahead from the handover area.

However, current GPS based location data has margin of error, the range is
about ±20m. In this case, when the MN moves at 40 km/h and the MN sets up
the next context transfer zones after position df , the fast context-aware handover
is not possible as the probability of the location error (p). When the MN deter-
mines the optimal point of time to transmit signal for the next context transfer
zones, these facts should be taken into account in the design considerations.

If a MN moves using context transfer protocol, whether context transfer is
successful or not depends on the cell overlap ratio and MN’s speed within cell
overlap region, and the Round-Trip-Times (RTT) of the message exchange be-
tween the previous AR and the new AR during the handover[11][12]. If the cell
overlap ratio is too high, the MN experiences radio interference and performance
degradation of the wireless link. On the other hand, when its overlap ratio is too
low, the MN may not get sufficient time to complete the handover using the
context transfer. As shown in Figure 2(a), the layer 2 scan triggers the handover
anticipation at time t. At time t + x, the MN loses the connection to Cell 1.
So the context transfer must be terminated within time x. If the overlap region
is 30m and the average context transfer handover time (tcp) is about 2sec, the
MN may not perform the handover with context transfer when it moves above
v = 54[km/h] as shown in Figure 2(b).

3 A Mobility-Aware Security Context Management
Framework for Seamless Vehicular Services

Aiming to make the creation of context-aware seamless vehicular services easier
and more efficient, we designed the mobility-aware security management frame-
work. Figure 3 shows our handover scheme for vehicular users in mobile networks.

130 M. Lee, S. Park, and O. Song

MN Management

Entity (MME)

Privacy

Security

Vehicle

Interface

Authorization

Token

EAP/ CTP

Location

Prediction Block

Map Matcher

Location

Predictor

Prediction

Algorithms

Station

Management

Entity (SME)

STA #1

STA #2

STA #3

.

.

.

Protocol

Management Entity

(PME)

Location

Management

Context Transfer

Re-initiate

Context-aware Handover Decision

PHY Layer Sensing MAC Layer Sensing

Local Context DB

Decision Control

Signal detection Available bandwidth

Context-aware

Handover Block

Messaging Service

Location Manager

Messaging Service

Road

Map

DB

real-time location

data

User

Profiles

location history, user

profiles, service level

Location History

Update

Satellite (GPS)

Positioning

Destination,

traffic info

Digital Map

Information including

cell boundary info

UTRAN

CN

UTRAN

SGSN

GGSN

RNC

RNC

HLR(HSS)

Location
Manager

Initial login

Logout

AAA

1

Policy

server

2

3

4

5

6

1
2

3

5

4

1 Network selection & AAA procedure
Mobility prediction

with Next Context Transfer Zones indication

CTAR message

Context Transfer Trigger
Context Transfer

6 Install the contexts

Context Transfer Trigger

Handoff road Segments and

its coordinations

Monitoring all MN in

administrative domain

[Handoff segments,

its coordination]

User Applications

and

Telematics

Applications

Emergency

Multimedia

services

Navigation

Mobile Manager in Smart Vehicle

Handover

Fig. 3. The Mobility-aware Context Management Framework for Telematics

The MN performs full authentication for initial login in core network (CN) where
stores registration data for users after network selection procedure. At the ini-
tial login, the mobile user may configure the user specific information such as
destination, user applications and downloaded telematics services.

After the login process, AAA context including the cipher key is installed in
current AR and the MN gets GPS-based real-time location information and re-
ceives handover road segments and its coordination periodically from Location
Manager. The MN predicts next cell(s) through Mobile Manager inside the vehi-
cle or within the mobile terminal, and transmits the next Context Transfer Zones
Indication (CTZI) to Location Manager at the appropriate time as described in
section 2[13]. Location Manager which received CTZI from MN sends a Context

Elastic Security QoS Provisioning for Telematics Applications 131

CTAR(MN’s previous IP

address, nAR’s IP address,

FPTs, authorization

token, time bound)

CTD(MN’s previous IP address, feature context, token

parameters, time bound)

Mobile Manager predicts the mobility of the MN

locally and prepare context-aware roaming

 Indication [Next Context Transfer Zone (pAR & nAR’ IP

address, time bound, MN’s previous IP address, FPTs,

authorization token, depth)]

CTAR(MN’s previous IP address, pAR’s IP

address, FPTs, authorization token)

Context Transfer

with Mobility

Prediction

(class 1)

CTDR (opt)

CTAR(MN’s previous IP address, pAR’ s IP address, FPTs, authorization token)

CT-Req(MN’s previous IP address, FPTs, authorization token)

CTD(MN’s previous IP address, feature context)

CTDR

main step 1

(if successful)

(class 2)

main step 2

(if failure)

(class 3)

MN
(Mobile Manager)

Location
Manager

New AR 1Previous AR New AR 2

Fig. 4. Protocol design and job classes for the context-aware handover

Transfer Activate Request (CTAR) message as a context transfer triggering that
causes the current AR to transfer AAA context. New AR installs AAA context
and waits for the MN’s CTAR message within time bound. If the MN transfers
CTAR message to new AR with authorization token during handover, New AR
sends success message to the MN if token verification is successful. This protocol
flow is depicted in Figure 4.

Mobile Manager may be built inside a vehicle typically. It predicts next cell(s)
using real-time location data and mobility prediction application, and determines
the next context transfer zones at appropriate time. Location Manager plays a
key role of context transfer trigger in the proposed architecture. It also monitors
all MN’s movements and maintains handover road segments and their coordi-
nation in its local DB. While a Location Manager interoperates all MNs in an
administrative domain, it mediates AAA context transfer among ARs.

Figure 4 shows the protocol flow from the point of time transferring MN’s
CTZI to Location Manager. If the mobility prediction is correct, MN performs
secure context-aware handover procedure. However, when it is failure, the MN
can complete the handover using general context transfer in our scheme.

4 Performance Analysis

The performance of the proposed secure context-aware handover scheme with
mobility prediction and secure context transfer is evaluated by the simulation

132 M. Lee, S. Park, and O. Song

(1,1)(1,2) (1,3) (2,1)(2,3) (3,1) (4,1) (4,2)(5,3)

1

p

1 - p

1

1

1
1

1

1
1

1

5

2

4

3
r11,21 = 1 r21,31 = 1

r31,21 = 1

r21,41 = 1

r41,12 = p
r41,13 = 1 - p

r42,11 = 1

r12,42 = 1

r13,53 = 1

r53,11 = 1

r53,23 = 1 r23,53 = 1

Mobile

Node

pAR
Location

Manager

nAR 1

nAR 2

p: accuracy of mobility

prediction

Fig. 5. Multiple Queuing Network Model and State Transition Diagram for the Pro-
posed Secure Context-aware Handover Protocol

environment as shown in Figure 5. We assumed that each router guarantees
compatibilities for the context transfer and the context transfer between two
routers is possible only if the receiving router supports the same context transfer-
candidate services as the sending router.

In the scenario of Figure 4, the context-aware handover procedure has three
job classes; the context transfer zone setup step and two main steps according
as it is success or failure. If the mobility prediction is successful, the MN per-
forms the secure context-aware handover procedure. However, when the mobility
prediction is wrong, it is possible to use general context transfer protocol.

Elastic Security QoS Provisioning for Telematics Applications 133

Table 1. The Process for the Job Classes in the Queuing Network Model

Class Context Transfer
Zone Setup step

(class 1)

Context-aware
authentication step

(class 2)

Context-transfer step
(class 3)

Mobile node
(node 1)

1 mobility prediction
indication

1 CTAR 1 CTAR

pAR
(node 2)

2 forwarding
(indication, context)

0 1 token verification
1 forwarding (context)

Location
Manager
(node 3)

1 forwarding
(CT Trigger)

0 0

nAR 1
(node 4)

1 install context 1 token verification 0

nAR 2
(node 5)

0 0 1 CT-Req forwarding
1 install context

We have modeled and tried to solve our architecture as a closed queuing
system for the proposed protocol as in Figure 5 and Table 1. We analyzed the
performance of our scheme by approximate Mean Value Analysis (MVA) as
described in [14][15]. rim,jn means the probability that a class m job at node
i moves to class n at node j after completing the services. p represents the
probability of the mobility prediction accuracy.

We analyzed our scheme according to following steps of class switching closed
queuing system.

Step1: Calculate the number of visits in original network by using (1)

eir =
K∑

j=1

C∑
s=1

ejsrjs,ir (1)

where K = total number of queues, C = total number of classes.
Step 2: Transform the queuing system to chain.
Step 3: Calculate the number of visits e∗iq for each chain by using (2)

e∗iq =

∑
r∈πq

eir∑
r∈πq

e1r
(2)

where r= queue number in chain q, πq = total queue number
Step 4: Calculate the scale factor αir and service times siq by using (3)
with (1).

siq =
sirαir∑
r∈πq

, αir =
eir∑

s∈πq
eis

(3)

Step 5: Calculate the performance parameters for each chain using MVA.

134 M. Lee, S. Park, and O. Song

Table 2. The Measured Parameters for the Queuing Network Model

Entity Operation in scenario Performance
Setting Context Transfer Zones

Mobile Node Context Transfer Zone Indication with
authorization token

30.34 ms

Location
Manager

context transfer trigger with
authorization token

27.4 ms

pAR context transfer with token parameter 30 ms
nAR 1 Compute authorization token using parame-

ter(RSA encrypt on 512 bit keys)
31.201 KB/s

nAR 1 install AAA context 200 ms
Context-aware handover

Mobile Node CTAR with authorization token 30 ms
nAR 1 Token Verification

(3DES Symmetric key decryption)
1.090 MB/sec

Context transfer handover
Mobile Node CTAR with authorization token 30 ms

nAR 2 CT-Req with authorization token 27.4 ms
pAR context transfer 30 ms

nAR 2 install AAA context 200 ms

Table 2 summarizes the basic parameter settings underlying the performance
experiments. Location Manager and ARs used Solaris 8 machine with Pentium
III 933 MHz, 512 MB RAM. MN used Pentium III 800 MHz, 256MB RAM,
Windows XP operating system with Lucent Orinoco IEEE 802.11b wireless LAN

Fig. 6. Throughputs of Secure Context-aware Handover with Various Mobility Predic-
tion Accuracies

Elastic Security QoS Provisioning for Telematics Applications 135

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

R
o

a
m

in
g

 D
e
la

y
(s

e
c
)

only context transfer

context transfer with mobility predition (accuracy 80%)

context transfer with mobility predition (accuracy 60%)

Mobile Nodes

Fig. 7. Authentication Delays of Secure Context-aware Handover with Various Mobil-
ity Prediction Accuracies

card. The cryptographic library was Openssl 0.9.7c [16], and data size was 1KB
in token verification and 10 KB in context transfer.

Figure 6 shows the average throughput for the security context transfer with
the mobility prediction when the prediction accuracy p varies. The overall over-
head increases because the proposed method completes setting up context in
advance. However, when the accuracy of the mobility prediction is higher, it
shows that differences between the general context transfer method and our
context transfer method with mobility prediction is smaller.

Figure 7 describes the authentication latency for each case after the han-
dover events at layer 2. Our method sets up AAA context in advance before
the handover events and only performs token verification if the mobility predic-
tion is successful. Therefore, the MN experiences low latency relatively when it
uses our secure context-aware handover protocol with high mobility prediction
accuracy.

5 Conclusions

With the proliferation of wireless networks and telematics applications there is
a tremendous pressure to provide seamless and secure services. In this work we
suggest a mobility-aware handover to optimize the handover management in the
future mobile networks. We designed Mobile Manager and Location Manager to
effectively provide the seamless mobile services with the context transfer and the
mobility prediction for fast re-authentication. To reduce the signaling overhead
after the handover events at layer 2, we propose an efficient context transfer
mechanism between Mobile Manager and the Location Manager, providing the
context is available in the right place at right time. Previous AR forwards the

136 M. Lee, S. Park, and O. Song

pre-established AAA information to the new AR of the predicted wireless cell
where the MN might move in the near future. Simulations of our conext-aware
handover performance gave a good insight into the current excitation. The ana-
lytical results show that our scheme can be used as an intelligent add-on model
to existing networking systems to obtain performance and service improvement.

Additionally, the context-aware secure handover must also take into account
the fast recovery methods against the failure mobility prediction of vehicles. The
proposed mobility-aware mechanism is being integrated with the new interwork-
ing systems [18][19].

References

1. McNair, J., Fang Zhu: Vertical handoffs in fourth-generation multinetwork envi-
ronments. IEEE Wireless Communications, vol. 11, issue 3, June 2004 pp:8-15.

2. Xio Gao, Gang Wu, Miki, T.: End-to-end QoS provisioning in mobile heterogeneous
networks. IEEE Wireless Communications, vol. 11, issue 3, June 2004 pp.24-34.

3. J. Loughney: Context Transfer Protocol. Seamoby Working Group, Internet Engi-
neering Task Force, draft-ietf-seamoby-ctp-11.txt

4. Christos Politis, Kar Ann Chew, Nadeem Akhtar, Michael Georgiades and Rahim
Tafazolli: Hybrid Multilayer mobility management with AAA context transfer ca-
pabilities for All-IP networks. IEEE Wireless Communications, Aug 2004

5. J.Kempf: Problem Description: Reasons For Performing Context Transfers Between
Nodes in an IP Access Network. RFC 3374, Internet Engineering Task Force.

6. Abhishek Roi, Sajal K. Das: Exploiting Information Theory for adaptive mobility
and Resource Management in future cellular networks. IEEE Wireless Communi-
cations, Aug 2004.

7. G. Liu and G. Maguire Jr., A Class of Mobile Motion Prediction Algorithms for
Wireless Mobile Computing and Communications, ACM/Baltzer MONET, vol. 1,
no. 2, Oct. 1996, pp. 113-121.

8. T. Liu, P Bahl, and I. Chlamtac, Mobility Modeling, Location Tracking and Tra-
jectory Prediction in Wireless ATM Networks, IEEE Selected Areas in Communi-
cations, vol. 16, no. 16, Aug. 1998, pp. 922-936.

9. Wee-Seng Soh and Hyong S. Kim, Dynamic Bandwidth Reservation in Cellular
Networks Using Road Topology Based Mobility Predictions, Proc. IEEE INFO-
COM 2004, Mar. 2004.

10. Kam-Yiu Lam et al., On Using Handoff Statistics and Velocity for Location Man-
agement in Cellular Wireless Networks. Computer Journal, January 2005, vol. 48,
no. 1, pp.84-100.

11. Tim Ruckforth, Jan Linder: AAA Context Transfer for Fast Authenticated Inter-
domain Handover. Swisscom SA, Mar 2004

12. Juan M. Oyoqui, J. Antonio Garcia-Macias: Context transfer for seamless micro-
mobility. IEEE ENC’ 03, 2003

13. Hubaux, J.P. et. al: The security and privacy of smart vehicles. IEEE Security &
Privacy Magazine, vol 02, issue 3, May-June 2004. pp.49-55.

14. Boudewijn R. Haverkort John: Performance of Computer Communication Systems:
A Model-Based Approach’ , Wiley & Sons, October 1999.

15. Gunter Bolch, Stefan Greiner, Kishor Trevedi: A Generalized Analysis technique
for queueing networks with mixed priority strategy and class switching. Technical
Report TR-I4-95-08, Oct. 1995.

Elastic Security QoS Provisioning for Telematics Applications 137

16. OpenSSL, http://www.openssl.org
17. V. Bhargavan and M. Jayanth: Profile-based Next-cell Prediction in Indoor Wire-

less LAN. in Proc. IEEE SICON’97, Apr. 1997.
18. Minsoo Lee, Jintaek Kim, Sehyun Park, Ohyoung Song and Sungik Jun, A

Location-Aware Secure Interworking Architecture Between 3GPP and WLAN Sys-
tems, Lecture Notes in Computer Science, vol. 3506, May 2005, pp. 394-406.

19. Minsoo Lee, Gwanyeon Kim, and Sehyun Park: Seamless and Secure Mobility
Management with Location Aware Service (LAS) Broker for Future Mobile Inter-
working Networks, JOURNAL of COMMUNICATIONS and NETWORKS, vol. 7,
no. 2, JUNE 2005, pp. 207-221.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 138 – 149, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Improved Algorithm to Watermark
Numeric Relational Data∗

Fei Guo1, Jianmin Wang1, Zhihao Zhang1, Xiaojun Ye1, and Deyi Li1,2

1 School of Software, Tsinghua University, Beijing 100084, China
f-guo03@mails.tsinghua.edu.cn

jimwang@tsinghua.edu.cn
2 China Constitute of Electronic System Engineering,

Beijing 100039, China

Abstract. This paper studies an improved algorithm to watermark numeric
attributes in relational databases for copyright protection. It reviews related
researches and presents an improved insertion algorithm, a detection algorithm
and a recover algorithm. We introduce a varied-size grouping method in our
insertion algorithm to insert a meaningful watermark. We also introduce a new
mechanism to insert watermarks using the mark itself to decide marked
positions. This insertion mechanism can be validated in our detection algorithm
to decide whether a watermark exists or not. A badly destroyed marked relation
or only a small part of it could still be detected successfully. Our recover
algorithm introduces a competing mechanism to help recover the exact
meaningful watermark after the detection result confirms the existence of the
watermark. The experiments show it’s robust to various attacks.

1 Introduction

Data has become merchandise in this information age. Since valuable data could be copied
and distributed throughout networks easily, it faces the same problem of rights protection
as digital multimedia products [6]. Digital watermarking technology is a good solution
too. Watermarking technology aims to protect digital rights by introducing small errors
into the original content without affecting the usability for intended purpose.

1.1 Related Work

Watermarking relational databases has become an important topic in both fields of data-
base and information hiding. As far as we know, related work published recently includes:

− M1. Bit-resetting method [1]
− M2. Distribution preserving method [3]
− M3. Cloud watermarking method [7]
− M4. Classifying bit-resetting method [4]

∗ This research is supported by the National Basic Research Program under Grant No.

2002CB312000 and by National Natural Science Foundation of China under Project No.
60473077.

 An Improved Algorithm to Watermark Numeric Relational Data 139

For M1 and M3, both use a secret key to answer the question “whether a watermark
exists or not”, in other words, the embedded information is only one bit. For M2 and
M4, watermarks with real meanings could be inserted, e.g. specific names or pictures
of the owner. But it has trouble to argue ownership if the watermark has been badly
destroyed and only fragmentary parts of the watermark could be recovered. Because it
can’t tell whether the “unlike” watermark is a result of an attack or because no certain
watermarks exist at all, i.e., it might be a similar relation belonging to others.
Furthermore, both methods have to record extra classifying information [3], which
has almost the same size of the watermark itself or even more. It means not a total
blind system (R3 in Section 2).

1.2 Our Contributions

In this paper, we study an improved algorithm to watermark numeric attributes in
relational databases. We use groups of tuples to represent each bit of the meaningful
watermark. To maintain the same classifying result for successful recovering, we
introduce a varied-size classifying method. A value of “remainder” of each tuple is
calculated to identify which group it should belong to. Only the length of the watermark
is needed while recovering the watermark, thus we achieve a total blind system.

We also introduce a new mechanism to insert a watermark that could be detected in
despite of the exact content of the meaningful watermark. For example, if we have
inserted a picture of the owner as a watermark, the detection result could prove the
existence of this picture, i.e. prove the ownership, even when the picture can not be
recovered totally for any reason. Thus we divide the traditional “extraction” step into
two phases: the “detection phase” to judge whether a watermark exists and the
“recover phase” to recover the entire watermark.

In the detection phase, we use the secret key to find enough proof to claim the
ownership based on statistics. A badly destroyed watermark could still be detected
successfully. So the owner is capable of proving ownership at least and could start further
investigation reasonably. It’s also an efficient way to distinguish unauthorized use of the
owner’s relations from legal use of similar ones that belong to others. That’s because we
only need to detect a relatively small part of large relations with millions of tuples or more.

In the recover phase, the entire watermark will be recovered. If the content of the
watermark is some information to identify data users, it can be used to trace the
source of an illegal copy among those users. The recover algorithm only need to be
applied to the suspect relations selected in the detection phase. Since we know a
watermark has been inserted with adequate confidence, we can use looser
qualifications to decide each mark bit is actually “1” or “0”. A competing mechanism
simply decides either is more likely by detecting more matches. An original mark is
expected to match 100%. Since an attack may reduce both matches that indicate “1”
or “0”, we can recover the mark bit successfully if the real marked bit still wins over
the other. This makes our watermark more robust.

Our algorithm also has incremental updateability (R4 in Section 2). It's very useful
when the algorithm is applied in a practical database which will be inserted or
updated frequently. Because our insertion algorithm can be applied to each tuple
independently, we can preserve the watermark simply by applying our insertion
algorithm to those involved tuples without affecting other original ones.

140 F. Guo et al.

1.3 Organization

The rest of the paper is organized as follows: Section 2 describes the requirements for a
watermark and specific challenges for watermarking relational data. Section 3 provides
our insertion algorithm, detection algorithm and recover algorithm. Section 4 gives the
implementation of our watermarking algorithms on real data and a test for robustness
and some analysis. Section 5 gives conclusions and directions for future work.

2 Challenges for Watermarking Relational Databases

The requirements for watermarking relational data are mostly in common with digital
watermarks:

− R1. Imperceptibility: The embedding process should not introduce any
perceptible artifacts into the host data [10].

− R2. Robustness: Immunity against data distortions introduced through standard
data processing and attacks [10].

− R3. Blind system: Watermark detection should neither require the knowledge of
the original database nor the watermark [1].

− R4. Incremental Updatability: The watermark values should only be recomputed
for the added or modified tuples [1].

There are some special challenges for relational data too. It’s hard to preserve the
order of a meaningful watermark in a relational database. The error induced should be
within the usability bounds of the original data. Since a relational database may often
face operations including insertion, selection and update, the watermark should be
query-preserving [9] for those benign updates and also be robust to corresponding
malicious attacks below:

− A1. Subset selection: randomly take a subset of the tuples of a marked relation.
− A2. Subset addition: mix tuples from other sources to the original marked

relation or a part of it, also called mix-and-match attack [2].
− A3. Subset Alteration: modify some tuples in a marked relation to erase the

watermark. Either reset each attacked bit to the opposite or reset each attacked
bit randomly.

3 Algorithms

Now we provide our insertion, detection and recover algorithm. Table 1 shows the
notations used in this paper.

3.1 Conditions

Obviously, a watermark needs to modify the original data. Watermarking relational
databases doesn’t make any exception. Some small errors must be acceptable for rights
protection in return. Since any changes to a number will finally induce some changes in
one bit or some bits, bit is the smallest unit of distortion to numeric data. Our algorithm

 An Improved Algorithm to Watermark Numeric Relational Data 141

Table 1. Notations

 Number of tuples in the relation

1/ Target fraction of tuples marked

 Number of candidate bits to be modified

 Number of tuples actually marked

k The secret key

 Significance level for detecting a watermark

PK The primary key in a relation

is able to be applied to one single attribute with only one candidate bit available to be
changed. So we only ask the smallest available bandwidth [3] for watermarking.

A primary key is asked. We use the primary key for the identification of each
tuple. It’s really important for classifying and recovering. But sometimes most
significant bits (MSBs) could substitute the primary key (Section 3.5) in a relation
without a primary key.

In the relation to be marked, the probabilities of a randomly selected bit to be either
1 or 0 are both 1/2. This assumption will help form a binominal distribution with p =
1/2 used in Section 3.3 and is always satisfied in real databases.

3.2 Insertion Algorithm

First we transform a meaningful watermark in any form into a bit flow. The candidate
attributes and candidate bits to be modified for watermarking are predefined based on
practical data properties and intended using purposes. We only mark in one attribute
in the following for simplicity.

It’s well-accepted in academic research that if the watermarking algorithm is open,
the security of the algorithm lies in one or several secret and cryptographically secure
keys used in the embedding and extraction process [5] [10]. We use a one-way hash
function result decided by the primary key PK and the secret key k to choose where to
mark and what to mark. An attacker can’t guess all of these for the secret key and
other parameters are private to the owner. We can use to choose the insertion
granularity effectively. Since the hash result is expected to be uniform distributed, we
can divide the relation into groups of varied but similar sizes.

We use the hash result of PK concatenated with k to calculate the remainder i for
each tuple, then collect tuples with same values of i into the same group. Thus we
have mark_length (the number of bits of the watermark) groups. The ith bit of the
watermark will be inserted into the ith group. The ascending order of i ranging from 0
to mark_length-1 naturally preserves the order of the watermark. The mark value to
be embedded will affect the inserting positions. Let’s see how a bit of mark is actually
inserted in each group. For example, we want to insert the bit of “1”. We use the hash
result of “1” concatenated with P and k to select tuples to be marked (line 5 of
insertion algorithm), the hash result of P concatenated with k and “1” to select the bit

142 F. Guo et al.

positions to be modified out of candidate bits in the predefined attribute (line 6), then
set the selected bit to “1” in each selected tuple. To insert “0” is alike simply by
changing “1” into “0” during the process above. Within each tuple, we use different
concatenation order to expect different hash results to decide which tuple to mark,
what to mark and which bit position to mark. The purpose of doing this is to avoid
any correlations which may potentially make the watermark easier to be found and
attacked. We can see that one tuple is marked independently of the other tuples during
the insertion process, so it achieves incremental updatability.

Finally we check the usability with respect to the intended use of the data. If not
acceptable, we simply give up watermarking this tuple and roll back. This kind of
tuples is very limited based on our conditions in Section 3.1.

Insertion algorithm: Only the owner of the relational data knows the secret key k. R is the
relation to be marked.

1) mark[] = bit(watermark)
2) record mark_length
3) for each tuple ∈R do
4) i = Hash(PK k) mod mark_length
5) if(Hash(mark[i] PK k) mod == 0) then
6) j = Hash(PK k mark[i]) mod
7) set the jth bit to mark[i]
8) if(not within_usability(new_data))
9) rollback
10) else commit

3.3 Detection Algorithm

Let’s see the mechanism to prove ownership in our detection phase. If a pattern with
rather small probability is likely to happen following a certain predefined routines
decided by a secret key, we can conclude that the owner of the watermarked relation
is the one who has the secret key once the pattern is detected. We use , also called
the significance level, to represent this small probability. The parameter is decided
by the detector freely. The smaller is, the more reliable each suspect of piracy is.
The larger is, the more suspects are expected.

For detecting a watermark, we identify a candidate set of tuples first. The candidate
set is formed by two subsets. The conditions for each tuple to be selected in “subset_1”
or “subset_0” are quite the same as the conditions to select marked tuples in the
insertion algorithm except replacing mark[i] with “1” and “0” respectively. The two
selections are independent. If a tuple is selected in both subsets, it’s simply treated as
two tuples, i.e., the tuple will count once in “subset_1” and once more in “subset_0”.
Total_count is used to count the size of this candidate set. Almost tuples will be
selected in “subset_1” and another tuples in “subset_0”. So total_count will be 2
approximately. Tuples selected in the candidate set are for further detection. For each
tuple in the candidate set, we follow the same condition to choose a bit position (jth bit
of candidate bits) as in the insertion algorithm except replacing mark[i] with “1” or “0”
accordingly. We say a match happens when either the jth bit of candidate bits is “1” in a
tuple belongs to “subset_1” or “0” in a tuple belongs to “subset_0”. We use the
parameter match_count to count the number of matches.

 An Improved Algorithm to Watermark Numeric Relational Data 143

Detection algorithm: k, and have the same values used in watermark insertion. is the
significance level for detecting a watermark. S is the relation to detect.

1) total_count = match_count = 0
2) for each tuple ∈S do
3) if(Hash(1 PK k) mod == 0) then //subset_1
4) total_count = total_count + 1
5) j = Hash(PK k 1) mod
6) if(the jth candidate bit == 1)
7) match_count = match_count + 1
8) if(Hash(0 PK k) mod == 0) then //subset_0
9) total_count = total_count + 1
10) j = Hash(PK k 0) mod
11) if(the jth candidate bit == 0)
12) match_count = match_count + 1
13) least_matches = threshold(total_count,)
14) if(match_count > least_matches) then
15) suspect piracy

The selecting process above can be modeled as a Bernoulli trial, thus the number
of matches is a random variable that meets a binominal distribution with parameters
total_count and 1/2, see (1).

MATCH_COUN (1)

For a non-marked relation, the number of matches is expected to be around . But
for a marked relation, all of the marked tuples have been selected into the candidate
set and each will contribute a match if we use the same PK and k. That’s because the
detection algorithm ensures us to find all marked bit positions and the insertion
algorithm ensures that all marked positions are matched ones. Among about 2 tuples
in the candidate set totally, the marked tuples will match and half of the rest may
match randomly, so we expect to see roughly 1.5 matches, which is distinctly bigger
than matches if not marked.

Given total_count and , we can calculate the least_matches, which is the smallest
number of matches to satisfy (2) below based on statistics theory. (2) means the
probability to detect least_matches for a certain total_count is smaller than in any
non-marked relations.

P{ MATCH_COUN > least_matches total_count } < (2)

Figure 1 shows the results of least_matches when is 0.01. We can see that if
total_count is big enough (more than 30), match_count of a relation marked by our
insertion algorithm is larger than least_matches and meanwhile the match_count of a
non-marked relation is smaller than least_matches. So we suspect piracy at the
confidence level (1-) once match_count is found larger than least_matches. Besides,
our watermarking algorithm is likely to meet a higher significance level of with the
increase of total_count. Given a fixed significance level, it provides a potential ability to
resist attacks when total_count is bigger. In reality, total_count is always big enough.

144 F. Guo et al.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Total_count

 least_matches α = 0.01
 match_count before watermarking
 match_count after watermarking

Fig. 1. The relationship between least_mathes and the expected match numbers before and after
watermarking when = 0.01. It’s effective to use least_matches to detect watermarked or not
when total_count is big enough.

Situations are almost the same when = 0.001, except that the least_matches is
just a little bigger than the least_matches when = 0.01 (see Table 2). A smaller
significance level will be easily achieved by our insertion algorithm when total_count
is bigger. We usually set = 0.01.

Table 2. Least_matches when = 0.01 and = 0.001

totalcount(2) 10 20 30 40 50 60 70 80 90 100 …

least_matches(=0.01) 10 16 22 28 34 40 46 51 57 63 …

least_matches(=0.001) 10 18 24 31 37 43 49 55 61 66 …

3.4 Recover Algorithm

We will apply our recover algorithm to a suspect relation after the detection result
confirms a watermark does exist. To recover the entire watermark, the order of the mark
is needed which we pay no attention to in the detection phase. In our detection
algorithm, we can form exactly the same groups as in the insertion algorithm if PK, k
and mark_length are all the same, so the original order of the watermark is preserved.
What we have to decide next is what has been inserted into each group. There are only
two choices, either “1” or “0”. Suppose it’s “1”, we follow exactly the same routes
while inserting “1” to find all marked positions, and then count matches similar as we
do in the detection algorithm. We also count matches supposing “0” has been inserted.

 An Improved Algorithm to Watermark Numeric Relational Data 145

Then we compare the two results of matches and judge either has more matches. Since
we believe each group must have been inserted a bit with adequate confidence, we use
very loose qualifications to recover a bit of the watermark in spite of match_count
should equal total_count in an original marked group. The whole watermark’s reliability
has already been proved to meet the significance level in the detection phase.

We can also use the significance level similar as in the detection algorithm in each
group, so each bit of the watermark is reliable at a certain confidence level, but some
bits may fail to recover. Thus we can make it an independent extraction algorithm that
doesn’t need the detection phase like M2 and M4.

Recover algorithm: k, , and mark_length have the same values used in watermark insertion,
S is a marked relation selected by the detection algorithm.

1) for each tuple S do
2) i = Hash(PK k) mod mark_length
3) subset tuple
4) for(i = 0; i < mark_length; i + +)
5) recover(subseti)
6) return mark[]

7) recover(subseti) //recover a bit from each subset
8) total_count0 = match_count0 = 0

total_count1 = match_count1 = 0
9) for each tuple in subseti do
10) if(Hash(1 PK k) mod == 0) then
11) total_count1 = total_count1 + 1
12) j = Hash(PK k 1) mod
13) if(the jth candidate bit == 1)
14) match_count1 = match_count1 + 1
15) if(Hash(0 PK k) mod == 0) then
16) total_count0 = total_count0 + 1
17) j = Hash(PK k 0) mod
18) if(the jth candidate bit == 1)
19) match_count0 = match_count0 + 1
20) if(match_count0 / total_count0 >

match_count1 / total_count1)
21) mark[i]= 0
22) else mark[i]= 1
23) return mark[i]

3.5 Extensions

Our algorithm only marks a single attribute for simplicity. We can also extend our
algorithm to more candidate attributes in two different ways. One is to simply
propagate it to other attributes available to be marked, thus the same mark is inserted
to different attributes repeatedly. The other is to add a similar step to select an
attribute to be marked in each tuple right before line 6 in the insertion algorithm, thus
we can disperse one watermark into several candidate attributes.

If a primary key doesn’t exist in the relation, we expect to use most significant bits
(MSBs) for they are hardly changed since a distortion in MSBs will reduce the usability

146 F. Guo et al.

badly. However, in situations when the MSBs have many duplicates, to use them as the
primary key may induce many identical marks, which are easier to be found and attacked.

4 Implementation and Experiments

We ran experiments in Windows 2003 with 2.0 GHz CPU and 512MB RAM.
Algorithms are written in Visual C++ 6.0 using ODBC connectivity to access
Microsoft Office Access 2003. We applied our algorithms to Wisconsin Diagnostic
Breast Cancer (WDBC) dataset, available at the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/wdbc.data). There
are 569 tuples in this dataset, each with 32 attributes. The first attribute which is the
ID number of each patient is used as the primary key. The sixth attribute which is the
area of the cell nucleus is used as the candidate attribute to be marked. The area
values are ranging from 143.5 to 2501. The candidate bit positions to be modified are
the first 3 bits right before the radix point. The watermark to be inserted is an 8-bit
flow “01100001” which is the ASCII code for letter “a”. Target fraction of tuples
marked is set to 1/8 and 1/5 respectively.

When = 8, before watermarking the detection result is 69 match_count out of 143
total_count which means the relation doesn’t contain a watermark because
least_matches is 86 out of 143 total_count when the significance level is 0.01. For
inserting a watermark, we only need to modify 34 tuples by changing one bit in each
tuple and total marked tuples are 67, i.e., = 67. After watermarking it’s 100
match_count out of 143 total_count (larger than the least_matches) which confirms
the existence of a watermark. The average value of the candidate attribute to be
marked is 654.8891 before watermarking and 654.8821 after watermarking; the

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

W
at

er
m

ar
k

re
co

ve
re

d
(%

)

Fraction of tuples selected (%)

 ω = 67
 ω = 124

Fig. 2. Watermark recovered in subset selection attack (=0.01)

 An Improved Algorithm to Watermark Numeric Relational Data 147

variance is about 352 both before and after watermarking. So we can say the
distortion resulted by watermarking is small enough to maintain the usability of the
original relation. When = 5, it’s almost the same except = 124.

4.1 Subset Selection Attack

The attacker attempts to omit parts of the watermark by selecting a subset of tuples that
are still valuable from the original marked relation. We can see in Figure 2 that when =
67, it has no effect at all to our watermark by selecting 80% of the watermarked relation.
Even when 10% of the data is selected, only 62.5% of the watermark can be successfully
recovered, it still meets the significance level 0.01 to prove ownership, i.e. 14
match_count out of 15 total_count, which is larger than least_matches 13. In most cases,
more bits of the watermark can be successfully recovered when = 124 compared with

 = 67. We can see that even a small part of the marked relation is enough for a
successful detection. This is especially meaningful when detecting large size relations.

4.2 Subset Addition Attack (Mix-and-Match Attack)

In this part, the attacker randomly selects out part of the watermarked relation and mixes
them with similar tuples probably without watermarks to form a new relation of
approximately the same size of the original one. Figure 3 shows the result. When =
67, 100% of the watermark can be recovered when we randomly select 70% tuples from
the watermarked relation and mix them with 30% tuples from the original unmarked
relation. But when we select 50% or less of the watermarked relation, we fail to detect
the watermark based on statistics at the significance level of 0.01 which means no

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

w
at

er
m

ar
k

re
co

ve
re

d
(%

)

Fraction of tuples from the marked relation (%)

 ω = 67
 ω = 124

Fig. 3. Watermark recovered in subset addition attack (=0.01)

148 F. Guo et al.

watermark, although in fact we can still apply our recover algorithm and recover
“00100001” which is only 1 bit error from the original watermark. The reason is the
limited number of marked tuples, 67 is relatively small. The bigger is, the more robust
the watermark is, i.e., more likely to detect and recover. When we enlarge to 124 by
increasing the insertion rate from 1/8 to 1/5, we get better results. Even when we only
select 20% of the marked relation and mix them with 80% of the original unmarked
relation, we can detect the watermark successfully for the 139 match_count out of 237
total_count is larger than the least_matches 137, and meanwhile recover 87.5% of the
watermark. However, a bigger means more distortion to the original data, so there is a
tradeoff between usability and robustness. We can usually get a much bigger when
watermarking a bigger relation without enlarging the insertion rate. For example is
expected to be 1000 when we mark only 1% of a relation with 100,000 tuples.

4.3 Subset Alteration Attack

Since we can modify some tuples a little to insert a watermark, the attacker is also able to
modify the watermarked relation a little to destroy our watermark. Suppose the attacker is
lucky enough to discover accidentally what the three candidate bits are which could make
the attack more effective. We randomly altered a portion of watermarked tuples by
resetting one bit oppositely among the 3 candidate bits in each tuple, i.e., change the
value 0 of a bit into 1 and value 1 into 0. When = 67, we can see in Figure 4 that we
can successfully recover the entire watermark when we altered 40% or less tuples. But
fail to detect the watermark when 60% or more tuples are attacked. It’s a same problem
we met in 4.2 and could be solved when is larger. When = 124, we can detect the
watermark and recover 87.5% of it even when 80% of tuples have been changed.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

W
at

er
m

ar
k

re
co

ve
re

d
(%

)

Fraction of tuples altered (%)

 ω = 67
 ω = 124

Fig. 4. Watermark recovered in subset alteration attack (=0.01)

 An Improved Algorithm to Watermark Numeric Relational Data 149

5 Summary

In this paper, we studied an improved watermarking algorithm for numeric relational
data, which makes it possible to judge “whether a watermark has been inserted” first,
and find “what has been inserted” afterwards. The detection phase can give the
reliability of the watermark recovered in the next recover phase quantitatively. It’s
meaningful when serious attacks happen. A badly destroyed watermark still can be
detected successfully to prove ownership. It also provides a simple way to judge
whether a relation has been watermarked or not for large relations. We provided three
algorithms for insertion, detection and recovering separately. The algorithm proved to
have immunity to popular attacks to relational data and ask the smallest available
bandwidth. It also achieved incremental updatability in relational databases and a total
blind system. In the future, we’d like to add watermarking function using our
algorithms to an open-sourced DBMS like PostgreSQL, making it a “Watermarking
DBMS” system.

References

1. Rakesh Agrawal and Jerry Kiernan.: Watermarking relational databases. Proceedings of
the 28th International Conference on Very Large Databases VLDB. (2002).

2. Rakesh Agrawal, Peter J. Haas, Jerry Kiernan.: Watermarking Relational Data:
Framework, Algorithms and Analysis. VLDB Journal. (2003).

3. Radu Sion, Mikhail Atallah, Sunil Prabhakar.: Rights Protection for Relational Data.
Proceedings of ACM SIGMOD. (2003) 98–109.

4. Min Huang, Jiaheng Cao, Zhiyong Peng, Ying Fang.: A New Watermark Mechanism for
Relational Data. The Fourth International Conference on Computer and Information
Technology (CIT'04). (2004) 946–950.

5. Bingxi Wang, Qi Chen, Fengsen Deng.: Technology of Digital Watermarking. Xidian
University Press, Xi’an. (2003).

6. Voyatzis G, Pitas I.: The Use of Watermarks in The Protection of Digital Multimedia
Products. Proceedings of IEEE. (1999)1197–1207.

7. Zhang Yong, Zhao Dong-ning, Li De-yi.: Digital Watermarking for Relational Databases.
Computer Engineering and Application. (2003)193–195.

8. Ingemar J. Cox, Matt L. Miller and Jeffrey A. Bloom.: Watermarking Applications and
Their Properties. International Conference on Information Technology'2000. (2000)6–10.

9. David Gross-Amblard.: Query-preserving Watermarking of Relational Databases and
XML Documents, PODS 2003, San Diego CA. (2003)191–201.

10. F. Hartung and M. Kutter.: Multimedia Watermarking Techniques, Proceedings of the
IEEE, Special Issue on Identification and Protection of Multimedia Information 87. (1999).

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 150 – 164, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Video Fingerprinting System Using Wavelet and Error
Correcting Code

Hyunho Kang1, Brian Kurkoski2, Youngran Park3, Hyejoo Lee4,
Sanguk Shin3, Kazuhiko Yamaguchi2, and Kingo Kobayashi2

1 Graduate School of Information Systems, University of Electro-Communications,
1-5-1, Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

2 Dept. of Inf. and Communications Eng., University of Electro-Communications,
1-5-1, Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

{kang, kurkoski, yama, kingo}@ice.uec.ac.jp
3 Department of Information Security, Pukyong National University,
599-1 Daeyeon-3Dong, Nam-Gu, Busan 608-737, Republic of Korea

Podosongei@hanmail.net, shinsu@pknu.ac.kr
4 Department of Computer Science, Kyungsung University, 324-79 Daeyeon-3Dong,

Nam-Gu, Busan 608-736, Republic of Korea
iamhj@paran.com

Abstract. In this paper, we present a video fingerprinting system to identify the
source of illegal copies. Content is distributed along a specified tree, with the
seller as the root of the tree, the legitimate users as the leaves, and the internal
nodes as content buyer or seller. Because there is a limited number of user areas
available in each tree, we propose to build sub-trees, where each sub-tree has a
distinctive logo. In this paper, we will use logos which are bit mapped images of
the tree number. The extracted logo shows better performance visually using
ECC. The fingerprinting step is achieved by the insertion of a unique information
in the video wavelet coefficients by temporal wavelet transform. Our fingerprint-
ing system is able to detect unique fingerprinting information in video content
even if it has been distorted. In addition, our method does not need original video
frame for extraction step.

1 Introduction

The rapid development of the Internet and digital technologies in the past years have
increased the availability of multimedia content. One of the great advantages of
digital data is that it can be reproduced without loss of quality. However, it can also
be modified easily. The question then arises about copyright protection.

Watermarking can be used for copyright protection or for identification of the
receiver. Copyright protection watermarks embed some information in the data to
identify the copyright holder or content provider, while receiver-identifying
watermarking, commonly referred to as fingerprinting, embeds information to identify
the receiver of that copy of the content. Thus, if an unauthorized copy of the content
is recovered, extracting the fingerprint will show who the initial receiver was [1].
Namely, fingerprinting is a method of embedding a unique, inconspicuous serial

Video Fingerprinting System Using Wavelet and Error Correcting Code 151

number (fingerprint) into every copy of digital data that would be legally sold. The
buyer of a legal copy is discouraged from distributing illegal copies, which can be
traced back to the last legitimate owner via the fingerprint. In this sense,
fingerprinting is a passive form of security, meaning that it is effective after an attack
has been applied, as opposed to active forms of security, such as encryption, which is
effective from the point it is applied to when decryption takes place[2].

Although a large number of studies have been made on cryptographic point of
view [3-10], little is known about practical application. The purpose of this paper is to
address the problem of implementation of video fingerprinting. In this paper, we use a
tree as in Ref. [11] to distribute video content and wavelet transform as in Ref. [12-
15] to embed data in video content and make it robust to attack.

Content is distributed along a specified tree, with the seller as the root of the tree, the
legitimate users as the leaves, and the internal nodes as content buyer or seller according
to circumstances. Because there are a limited number of user areas available in each tree,
we propose to build sub-trees, where each sub-tree has a distinctive logo(Fig. 1). In this
paper, we will use logos which are bit mapped images of the tree number. The extracted
logo shows better performance visually using ECC(Error Correcting Code). We have
used the technique in Ref. [16] to insert a logo in a fast and straightforward manner.

Our fingerprinting system is able to detect unique fingerprinting information of
video content even if it has been distorted by an attack. In addition, our method does
not need the original video content for fingerprint extraction. Experimental results are
presented to demonstrate the ability of our system to trace unauthorized distribution
of video content, and to show its robustness to various collusion attack operations and
MPEG2 compression.

This paper is outlined as follows. In Section 2 we propose an embedding and detect-
ing process that is based on temporal wavelet transforms. Section 3 presents analysis
and simulation results. Section 4 shows experimental results for important attacks that
are often considered in video fingerprinting. Finally, Section 5 gives the conclusion.

logoedistinctiv

Fig. 1. Tree Selection – We can select the type of content distribution tree before sending to
fingerprinting channel. If we are select the Tree 31, then 31 logo image will be embed into all
video frames.

2 Proposed Method

Our system consists of four phases embedding logo(Sect. 2.1), making content dis-
tribution tree(Sect. 2.2), embedding of fingerprinting information(Sect. 2.3), and ex-
tracting of fingerprinting information(Sect. 2.4).

152 H. Kang et al.

2.1 Embedding Logo

The logo is a bit-mapped image of the tree number(we use 31 as an example). We
have used the technique in Ref. [16] to insert a logo and briefly describe the method.
With the logo embedding technique, a large number of logos, and thus a large number
of end users can be supported with this proposed system.

After the binary logo image is permuted, the scrambled data sequence is then in-
serted into the frames in the spatial domain. Before insertion, the host video frame is
first decomposed into blocks of size k×k(we use 4×4 as an example). Let B be a se-
lected block, the logo insertion method is described as follows:

Step 1. Sort the pixels in block B in an ascending order of pixel intensities.
Step 2. Compute the average intensity gmean, maximal intensity gmax, and minimal
intensity gmin of the block.

gmean=
−

=

−

=

1n

0i

1n

0j
ij2 b

n

1
, gmax=max(bij, 0 ≤ i,j<n), and gmin=min(bij, 0 ≤ i,j<n)

where bij represents the intensity of the (i,j)-th pixel in block B.
Step 3. Classify every pixel in B according to:

bij ∈ZH if bij >gmean, bij ∈ZL if bij ≤ gmean, where ZH and ZL represent high-intensity
category and low-intensity category, respectively.

Step 4. Compute the mean values, mH and mL, of ZH and ZL.
Step 5. Define the contrast value of block B as CB=max(Cmin, (gmax-gmin)), where is
a constant, and Cmin is a constant value which determines the minimal value for pixel
modification.
Step 6. Let bw ∈{0,1} be the embedded value. Modify the pixel values in block B
according to the following rules:

If bw=1: g’=gmax (if g>mH), g’=gmean (if mL ≤ g < gmean), g
’=g+ (otherwise)

If bw=0: g’=gmin (if g<mL), g’=gmean (if gmean ≤ g < mH), g’=g- (otherwise), where g
is the original intensity, g’ is the modified intensity and is a randomly generated
value between 0 and CB.

If the block is of larger contrast, the intensities of pixels will be changed greatly.
Otherwise, the intensities are tuned slightly. The extraction of a logo is similar to the
embedding process. Let block B and B’ denote the original and modified blocks,
respectively. The sum of pixel intensities of B’ will be larger than that of B if the
inserted logo pixel value bw is 1. On the other hand, if the inserted logo pixel value bw
is 0, the sum of pixel intensities of B’ will be smaller than that of B.

In our method, ECC is integrated into Ref. [16] watermarking system. The convo-
lutional error correcting code is easy to implement and fast, so we use this encoder to
correct errors in the logo, which were introduced by attacks and compression. The
resulting system is evaluated under our fingerprinting system channel with collusion
attacks and MPEG compression.

To sum up(Fig. 2), first, tree number is encoded by the convolutional code. The
encoded information is then embedded into each video frame using Ref. [16] water-
marking system. Next, the resulting frames are fingerprinted according to the

Video Fingerprinting System Using Wavelet and Error Correcting Code 153

olog)31(Tree)mpeg(videooriginal

31
9S31

9B

nalConvolutio
Encoder

8.Figsee

nalConvolutio
Decoder

ngWatermarki
]16[Embedder

MPEG
decoding

MPEG
encoding

Video
ingintFingerpr
)4.Figsee(

Collusion Attacks

]16[Extracter
ngWatermarki

)3.Figsee(

Fig. 2. The overall diagram

content distribution tree. In the experimental section, we show that the convolutional
code enhances the robustness of Ref. [16] watermarking system.

2.2 Content Distribution Tree

Remark 1. Let (∈ +) be the unique ID for seller S, let k be the key expansion ob-
tained from the seed ID , where k is a vector of real number from -1 to 1 of dimen-
sion h×v (as a video frame size).

Remark 2. Let (∈ +) be the unique ID for buyer B, let p be the pseudo-random
number of the seed ID , where p is a vector of length h×v (as a video frame size).

The buyer(B) transmits pseudo-random number(p) to the seller(S). The seller then
inserts fingerprinting information I = p(k) into the appropriate user area of the wavelet
transform.

When video content is distributed, fingerprinting information, I is inserted to each
user’s area of video content as described by the tree (31). Fig. 3 tells us each path has a
unique fingerprint. There exists a unique path between the seller and buyer, and the
unique fingerprint can be extracted to distinguish between the paths.

For example, when node-S0 and node-B1 engage in a transaction, fingerprinting in-
formation(I1) generated by the buyer and seller exchanging keys is inserted into

31
0S

31

1
B

31

1
S

31

2
B

31

2
S

31

6
B

31

6
S

31

3
B

31

3
S

31

7
B

31

7
S

31

4
B 31

5
B 31

8
B 31

12
B 31

14
B

31

13
B

31

13
S

31

11
B

31

11
S

31

10
B

31

10
S

31

9
B

31

9
S

31
1I

31
2I

31

3
I

31

4
I 31

5
I

31

6
I

31

7
I

31

8
I

31
9I

31

10
I

31
11I 31

13
I

31

12
I 31

14
I

)1(User)2(User)3(User)4(User)5(User

M
0S

videooriginal

)1(Tree)M(Tree

L

 (31) tree of 10 Buyer:B

(31) tree of Band Sbetween

 nInformatiotingFingerprin:I

(31) tree of 9 Seller:S

 (31) tree of 9 Buyer:B

31
10

31
10

31
9

31
10

31
9

31
9

1
0S L

)31(Tree

4.Figsee

Fig. 3. Content Distribution Tree. Pay attention number of tree was omitted in the text. If we
have M sub-trees(with M logos) and N users per sub-tree, then we can support M×N users.

154 H. Kang et al.

user1, user2 and user3 area of the transmitted video. Because user1, user2 and user3
are the end users of the video in this transaction. The fingerprint is inserted into the
frame by wavelet transform, and is described in Section 2.3. When node-S1 and node-
B2 engage in a transaction, fingerprinting information(I2) is inserted into user1 and
user2 area of the transmitted video. When node-S2 and node-B3 engage in a transac-
tion, fingerprinting information(I3) is inserted into user1 and user2 area of the trans-
mitted video. Finally, When node-S3 and node-B4 engage in a transaction, fingerprint-
ing information(I4) is inserted into user1 area of the end user1 video only.

Therefore, whenever a seller distributes content to a buyer, different fingerprinting
information is inserted. Lastly, four different fingerprints are embedded into user1’s
video, placed in user1, user2 and user3 area. The fingerprinting information in user1’s
video are presented in Table 1. If it can detect the existence or nonexistence of finger-
printing information of illegal distributions, 70 correlation computations are required
in Tree 31(See Fig. 3).

A 2-level temporal wavelet transform was performed on 32 frames of video, result-
ing in 4 types of frames(LL, LH, HL, HH where L and H stand for low and high

Table 1. Fingerprinting information of User1 video

Tree level User1 Area User2 Area User3 Area User4 Area User5 Area
1 I1 I1 I1
2 I2 I2
3 I3 I3
4 I4

Table 2. Fingerprinting information of User2 video

Tree level User1 Area User2 Area User3 Area User4 Area User5 Area
1 I1 I1 I1
2 I2 I2
3 I3 I3
4 I5

Table 3. Fingerprinting information of User3 video

Tree level User1 Area User2 Area User3 Area User4 Area User5 Area
1 I1 I1 I1
2 I6
3 I7
4 I8

Table 4. Fingerprinting information of User4 video

Tree level User1 Area User2 Area User3 Area User4 Area User5 Area
1 I9 I9
2 I10 I10
3 I11
4 I12

Video Fingerprinting System Using Wavelet and Error Correcting Code 155

Table 5. Fingerprinting information of User5 video

Tree level User1 Area User2 Area User3 Area User4 Area User5 Area
1 I9 I9
2 I10 I10
3 I13
4 I14

frequency respectively)[17]. In the experiment, user’s areas were 5 sequential fre-
quency frames among 8 frames of LH(low-high) areas. The LH means kind of inter-
mediate frequency area(see Fig. 6). The LH region was selected because it was found
to have the best detectability while not interfering with image quality.

Below is a series of five tables illustrating the information that is inserted in video
content having five end users.

2.3 Embedding of Fingerprinting Information

Fig. 4 shows the embedding process using temporal wavelet transform, selection of
the end user’s area and insertion of fingerprinting information. The fingerprint is
composed of information from seller and buyer. The seller information is a random
sequence (-1~1) of h×v real numbers from a pseudo-random number generation, with
a seed acting as an ID.

31
10p

31 31 31
10 10 10I p (k)=)areauserend(origF

fingerF α

video

video

)mpeg(video

31
10B

31
9B

31
9S

MPEG
decoding

MPEG
encoding

ingintFingerpr
Embedder

Temporal
Wavelet

Transform

TemporalInverse
Wavelet

Transform

Fig. 4. Embedding Diagram (when node-S9 and node-B10 engage in a transaction) (See Fig. 3)

Apply Eq. (1) to get fingerprinted video frames. In Fig. 3, when the content are dis-
tributed from the seller node-S to the buyer node-B, Eq. (1) is used once. The parame-
ter is the insertion strength; in this experiments, we choose =0.5.

Ffinger = Forig + ·Forig·Ij (1)

Ffinger : Fingerprinted video
Forig : Original video, LH frames which are the user areas

 : Insertion strength
Ij : Fingerprinting Information (j: buyer’s path index)

2.4 Extracting of Fingerprinting Information

In the extraction step, we can extract the embedded information with Eq. (2). Note
that the original video frames are not needed for extraction step.

156 H. Kang et al.

Iextract = Ffinger – F any (2)

Iextract : Extracted fingerprinting information, an estimate of fingerprint
Ffinger : Fingerprinted frames
F any : any one frame among F
F : frames except Ffinger[LL], Ffinger[LH[User1, User2, User3, User4, User5]] (see Fig. 6)

Linear correlation is calculated by Eq. (3). The linear correlation is known to be an
optimal method of detecting signals in the presence of additive, white Gaussian
noise[18]. In our experiments, collusion attacks and MPEG compression appear to
have AWGN characteristics. Therefore, linear correlation is suitable.

⋅= extractoriginal II
N

Cor
1

 (3)

N : video frame size (h×v)
In Figure 6, we show each user’s area and F frames that are used in extracting

fingerprinting information.

originalI

)areauserend(fingerF

anyFβ

extractI

MPEG
decoding

Temporal
Wavelet

Transform
difference ncorrelatio

videosuspicious

resultectiondet

Fig. 5. Extracting Diagram

L

frames32 L

L

L

L

L

framesfrequencylow16

framesfrequencyhigh16

area)1(user
area)2(user
area)3(user
area)4(user
area)5(user

βF

wavelet

wavelet

wavelet

L

H

LL

LH

HL

HL

Fig. 6. User areas and F areas after temporal wavelet transform

Video Fingerprinting System Using Wavelet and Error Correcting Code 157

3 Simulation Result

We have used the video sequence “table-tennis” with a frame size of 240×360 pixels
and a total of 32 frames. We use convolutional codes to correct errors introduced by
attacks and MPEG compression. A block diagram of the binary rate R ≅ 1/2 nonsys-
tematic feedforward convolutional encoder with memory order m=2 is shown in
Figure 7(far right).

+

+

)0(v

u

)1(v

Fig. 7. (left) test video, (middle) bit mapped tree number logo(51*52), (right) convolutional
encoder

5251× u

v

bits2652 bits46

bits2698

nalConvolutio
Encoder

)right(7.Figsee

bits5400

ngWatermarki
]16[Embedder

bitsdummy

Fig. 8. Detailed model of tree number embedding part of Fig. 2. We used a convolutional error
correcting code which is easy to implement and fast.

Fig. 9. Normalized correlation value of the detected logo after MPEG2 compression

158 H. Kang et al.

Fig. 10. Extracted tree number logo after MPEG2 compression, (above) with ECC, (below)
without ECC. The 8 pairs show 8 of the 32 frames.

3.1 Tree Number

In this experiment, we show that the addition of ECC improves the correlation value
of the system. As Figure 9 indicates, our system has good performance under MPEG2
compression.

3.2 Fingerprinting Information Detection

To analyze the detection result, consider the content distribution tree in Fig. 3. As Fig.
11 indicates, we see that fingerprints I1, I2, I3 and I4 were detected, corresponding to
the path 1 → 2 → 3 → 4 for user1. In user2 area, fingerprints I1, I2 and I3 were de-
tected, but, this does not correspond to a path in the tree. Similarly for user3 area.
Thus, we can conclude that this video was distributed to end user1.

Figs. 12~15 indicate a similar analysis for user2~5 video, respectively. This analy-
sis showed similar results.

As Fig. 12 indicates, we see that fingerprints I1, I2, I3 and I5 were detected, corre-
sponding to the path 1 → 2 → 3 → 5 for user2. In user1 area, fingerprints I1, I2 and I3

Fig. 11. Detection Result from User(1) Video

Video Fingerprinting System Using Wavelet and Error Correcting Code 159

Fig. 12. Detection Result from User(2) Video

Fig. 13. Detection Result from User(3) Video

were detected, but, this does not correspond to a path in the tree. Similarly for user3
area. Thus, we can conclude that this video was distributed to end user2.

As Fig. 13 indicates, we see that fingerprints I1, I6, I7 and I8 were detected, corre-
sponding to the path 1 → 6 → 7 → 8 for user3. In user1 area, fingerprints I1 was
detected, but, this does not correspond to a path in the tree. Similarly for user2 area.
Thus, we can conclude that this video was distributed to end user3.

160 H. Kang et al.

Fig. 14. Detection Result from User(4) Video

Fig. 15. Detection Result from User(5) Video

As Fig. 14 indicates, we see that fingerprints I9, I10, I11 and I12 were detected, corre-
sponding to the path 9 → 10 → 11 → 12 for user4. In user5 area, fingerprints I9 and
I10 were detected, but, this does not correspond to a path in the tree. Thus, we can
conclude that this video was distributed to end user4.

Video Fingerprinting System Using Wavelet and Error Correcting Code 161

As Fig. 15 indicates, we see that fingerprints I9, I10, I13 and I14 were detected, corre-
sponding to the path 9 → 10 → 13 → 14 for user5. In user4 area, fingerprints I9 and
I10 were detected, but, this does not correspond to a path in the tree. Thus, we can
conclude that this video was distributed to end user5.

4 Attacks

A powerful attack against digital fingerprinting is the collusion attack. The results of
our experiment show that the algorithm has some built-in resilience to collusion at-
tacks, since the algorithm uses a long, uniformly distributed random number as fin-
gerprinting information. In this attack, the following results were obtained.

4.1 Collusion Attack

(1) Averaging Collusion Attack
The averaging collusion attack was introduced by Cox, et al. [19]. The attacked video
is created by averaging four fingerprinted videos such as user1, user2, user3 and
user4’s video. Fig. 16(left) shows the results of user1 colluding with user2, user3 and
user4.

Fig. 16. Detection Result after Averaging Collusion(left), Maximum-Minimum Collusion
Attack(right)

(2) Maximum-Minimum Collusion Attack
A more powerful collusion attack is the maximum-minimum collusion attack pro-
posed by Stone [20]. The attacked video is created by taking the average of the
maximum and minimum values across the components of the fingerprinted video. Fig.
16(right) shows the results of user1 colluding with user2, user3 and user4.

(3) Negative-Correlation Collusion Attack
This attack is drives the correlation coefficient to a negative value[20]. However, we
can know that user1 colluded with user2, user3 and user4 in Fig. 17(left).

(4) Zero-Correlation Collusion Attack
This attack[21] is a modification method from Stone’s collusion attack. This attack
select a fingerprinted video from a number of available fingerprinted videos(user3

162 H. Kang et al.

Fig. 17. Detection Result after Negative-Correlation Collusion(left), Zero-Correlation Collu-
sion Attack(right)

(selected as an example). In user3 area, the correlation value has decreased percepti-
bly. However, we consider the case of user1 colluding with user2, user3 and user4 in
Fig. 17(right).

4.2 Robustness to MPEG2 Compression

Robustness against MPEG2 compression, is an essential requirement of digital broad-
casting content. This experiment result shows that there is possibility for practical use
in broadcasting.

Fig. 18. Detection Result after MPEG2 Compression 4Mbit/s (User1)

Video Fingerprinting System Using Wavelet and Error Correcting Code 163

In user1’s video(Fig. 18), we can clearly see the points in distribution path 1 → 2
→ 3 → 4 in user1 area, path 1 → 2 → 3 in user2 area, and path 1 in user3 area in
4Mbits/s video quality. That is, the end buyer is identified as user1 because this
agrees with the content distribution path of user1 in Figure 3.

5 Conclusion

We have presented here an approach for video fingerprinting implementation using a
watermarking technique. The embedding method in video frames is robust to various
attacks because of the use of the temporal wavelet transform. We showed robustness
of tree number insertion using ECC, which permits support of a large number of users
in the proposed fingerprinting scheme. Future research will include improvement
applying with cryptographic algorithm technique.

References

1. Judge, P., Ammar, M.: Security Issues and Solutions in Multicast Content Distribution: A
Survey. IEEE Network, Vol. 17. (2003) 30–36

2. Furht, B., Kirovski, B.: Multimedia Security Handbook. CRC Press (2005)
3. Pfitzmann, B., Schunter, M.: Asymmetric Fingerprinting. EUROCRYPTO’96, Lecture

Notes in Computer Science, Vol. 1070, Springer-Verlag, (1996) 84-95
4. Pfitzmann, B., Waidner, M.: Anonymous Fingerprinting EUROCRYPTO’97, Lecture

Notes in Computer Science, Vol. 1233, Springer-Verlag, (1997) 88-102
5. Domingo-Ferrer, J.: Anonymous Fingerprinting Based on Committed Oblivious Transfer.

PKC’99, Lecture Notes in Computer Science, Vol. 1560, Springer-Verlag, (1999) 43-52
6. Wang, Y., Lu, S., Liu, Z.: A Simple Anonymous Fingerprinting Scheme Based on Blind

Signature. Information and Communications Security, Lecture Notes in Computer Science,
Vol. 2836, Springer-Verlag, (2003) 260-268

7. Kuribayashi, M., Tanaka, H.: A Watermarking Scheme Applicable for Fingerprinting Pro-
tocol. IWDW’03, Lecture Notes in Computer Science, Vol. 2939, Springer-Verlag, (2004)
532-543

8. Ahmet, M.E.: Multimedia Security in Group Communication: Recent Progress in Key
Management, Authentication, and Watermarking. Multimedia Systems, Vol. 9, No. 3,
Springer-Verlag, (2003) 239-248

9. Emmanuel, S., Kankanhalli, M.S.: A Digital Rights Management Scheme for Broadcast
Video. Multimedia Systems, Vol. 8, No. 6, Springer-Verlag, (2003)

10. Kundur, D., Karthik, K.: Video Fingerprinting and Encryption Principles for Digital Rights
Management. Proceedings of the IEEE, Vol. 92, No. 6, (2004) 918-932

11. Wang, Y., Doherty, J., Dyck, R.V.: A Watermarking Algorithm for Fingerprinting Intelli-
gence Images. Conference on Information Sciences and Systems, (2001)

12. Swanson, M.D., Zhu, B., Tewfik, A.H.: Multiresolution Scene-based Video Watermarking
using Perceptual Models. IEEE Journal on Selected Areas in Comm., Vol. 16, No. 4,
(1998) 540-550

13. Sagetong, P., Zhou, W.: Dynamic Wavelet Feature-based Watermarking for Copyright
Tracking in digital Movie Distribution Systems. IEEE International Conference of Imaging
Processing. Sep. (2002)

164 H. Kang et al.

14. Yang, J., Lee, M.H, Liu, Q., Tan, G.Z., Wan, X.: Robust 3D Wavelet Video Watermark-
ing. IEEE International Conference on Consumer Electronics. June. (2003)

15. Li, Y., Gao, X., Ji, H.: A 3D Wavelet Based Spatial-Temporal Approach for Video Wa-
termarking. International Conference on Computational Intelligence and Multimedia Ap-
plications. Sept. (2003)

16. Lee, C.H., Lee, Y.K.: An Adaptive Digital Image Watermarking Technique For Copyright
Protection. IEEE Trans. On Consumer Electronics, Vol. 45, No. 4, (1999) 1005-1015

17. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms.
Prentice Hall (1997)

18. Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann, Academic
Press (2002)

19. Cox, I.J., Kilian, J., Leighton, T., Shanmoon, T.: Secure Spread Spectrum Watermarking
for Multimedia. IEEE Trans. On Image Processing, Vol. 6, No. 12, (1997) 1673-1687

20. Stone, H.: Analysis of Attacks on Image Watermarks with Randomized Coefficients. NEC
Technical Report. (1996)

21. Wahadaniah, V., Guan, Y.L., Chua, H.C.: A New Collusion Attack and Its Performance
Evaluation. IWDW’02, Lecture Notes in Computer Science, Vol. 2613, Springer-Verlag,
(2003) 64-80

Secure Asymmetric Watermark Detection
Without Secret of Modified Pixels

Mitsuo Okada and Hiroaki Kikuchi

Graduate School of Engineering, Tokai University,
1117 Kitakaname, Hiratsuka Kanagawa, Japan

{mitsuookada, kikn}@ep.u-tokai.ac.jp

Abstract. A new method of secure digital watermarking detection pro-
tocol is proposed in this paper. Our methodology applies to the protec-
tion of the digital contents against illegal use. Based upon the principle
of our methodological induction, an improvement of protecting copyright
contents has been achieved by means of allowing watermark verifier to
detect the embedded information with no secret information exposed in
extraction process. We set force our method by applying such a combi-
nation of patchwork watermark and public-key encryption protocol. Fu-
rukawa proposed a secure watermark detection scheme [4] in 2004 using
Paillier encryption, but its drawback is the heavy overhead in processing
time. We replace the cryptosystem with El Gamal encryption to improve
performance, and clarify improvement in processing time and robustness
against attacks based on experimental results.

1 Introduction

A new method of digital contents security for copyright protection is proposed
in this paper by hybridizing digital watermarking and public-key encryption
protocol. The protocol has successfully set off a downside of the watermark, a
symmetric property in embedding and extracting process.

The demand for contents security is increasing due to severe crime augmen-
tation accompanying rapid development of information technology. All kinds of
contents have become available in digital form, which might accelerate making
of perfect copies of digital video, image, and music data. Despite the fact that
an enormous number of those contents might be pirated for an illegal use, the
copyright law had been the only enforceable protection against the crime till
the technical protection mechanism such as information hiding was introduced.
One of the major information hiding technique is a digital watermarking that
makes copyright notice or some secret data concealed in the contents. The hid-
den information is used for claiming copyright, detecting tamper, communicating
confidentially, and so forth.

The ideal form of digital watermark is the one in which hidden information
should not be removed by any contents manipulations, the embedded contents
should not be spoiled by embedding information, and hiding should not percep-
tually appear. However, the most critical issue of watermarking is its symmetric

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 165–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 M. Okada and H. Kikuchi

property, that is, exactly the same secret key is used for hiding, and extracting
a message. In almost all of watermarking algorithms, the secret key of modified
pixels is exposed in extraction process. The author embeds information into the
image by using a secret key, and extracts the watermark by using the same key.
Hence, the risk in extraction process is not avoidable.

Furukawa proposed a method [4] to overcome the problem by combining public-
key algorithm and patchwork watermarking algorithm [1]. Patchwork watermark
is one of the statistical digital watermarking schemers which may be one of the
most robust methods because it embeds information in the skew of statistics.
His scheme allows an authorized verifier to detect the hidden message without
revealing the secret information, the indexes of modified pixels. In the scheme,
unique public-key algorithm, Paillier encryption [6], is used to conceal the in-
dexes. However, the drawback is the heavy overhead of Paillier encryption, which
makes the scheme inefficient. To address the issue, we propose a new scheme
based on [4], which employs El Gamal encryption instead of Paillier encryption.

In this paper, after reviewing patchwork watermark and Furukawa’s scheme,
we present a new watermarking scheme which allows secure detection of hidden
message and improves the efficiency. We evaluate the performance of the pro-
posed scheme with our testbed implementation, which qualifies the scheme for
secure watermark detection.

2 Preliminarily

2.1 Statistical Watermarking

Patchwork watermarking, proposed in 1995 by Bender et al., embeds information
in statistical value of contents. In this method, embedding key is a seed of pseudo-
random process which chooses a large number of pairs of pixels. The first pixel
value of a pair is made slightly brighter and the second one of the pair is made
slightly darker. This process is iterated for all pairs. Conceptually, the contrast
between pixels of the pairs encodes some secret information.

The extraction is carried out by finding the same pairs of the pixels chosen
in the embedding process and analyzing the difference of their brightness values
for all pairs. This provides invisible watermarks that have a higher degree of
robustness against attacks and image manipulations.

We describe an embedding process of patchwork watermark. First, we choose
a large number of pairs from original image I, and then obtain difference in each
pair. Let a, b be the first and second pixel of a pair, and Sn be the sum of (ai−bi)
for n pairs, i.e.,

Sn =
n∑

i=1

(ai − bi).

Let S̄n be an expected value defined by S̄n = Sn/n. Note that S̄n approaches 0
as n increases,

lim
n→∞ S̄n → 0. (1)

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 167

Fig. 1. Distributions of Differences (ai − bi) and (a′
i − b′

i)

Fig. 1 labeled as “Original Image” shows a distribution of differences in Lena
(256× 256 pixels, 256 gray scale level), with n = 10000. At this experiment, we
obtained S̄n = 0.0121, that satisfies the condition (1).

We describe an embedding process, how to hide secret message ω into I.
We choose a seed of pseudo-random sequence to assign two pixels (ai, bi) for n
pairs. Next, to generate embedded image I ′, we modify the assigned pixels as,
a′

i = ai + δ, and b′i = bi − δ, for i = 1, . . . , n, where δ is a constant that governs
robustness of the watermark. Note that the expected value S̄n

′, an average of
sum of the difference of the embedded image I ′, approaches 2δ as

S̄n
′ =

1
n

n∑
i=1

(ai + δ)− (bi − δ) =
1
n

n∑
i=1

(ai − bi) + 2δ = 2δ. (2)

With the parameter, δ = 20, the distribution of (a′
i − b′i) is shifted 40 to right

as illustrated in Fig. 1. Hence, as δ goes larger, accuracy of detection increases,
and as δ goes smaller, the risk of a false detection increases.

To extract hidden message ω, we choose a′
i, and b′i according to the random

numbers, and then determine,

ω =
{

0 S̄n
′
< τ,

1 S̄n
′ ≥ τ,

where τ is a threshold. The optimal threshold is given as τ = δ to equalize
the false positive and false negative. In the sample image Lena, we have S̄n

′ =
40.0158, which satisfies the condition of S̄n ≥ τ = δ = 20.

2.2 Cryptosystems

In this section, we review two cryptosystems, El Gamal encryption, and Paillier
encryption.

168 M. Okada and H. Kikuchi

El Gamal encryption, a public key encryption algorithm is used with patch-
work watermark for our method. The security of the encryption relies on the
difficulty of the discreet logarithm problem.

Let p be a secure prime number and g be a generator of multiplicative group of
order q. A public key y is defined by y = gx mod p where x ∈ Zq is a private key.
A ciphertext of plaintext m, E(m) = (c, d), is defined by c = gmyr mod p and
d = gr. The decrypted ciphertext is obtained by gm = D(c, d) = c/dx mod p.

Paillier encryption is proposed in [6]. For the key generation phase, gener-
ate large prime numbers p, and q, and pick g ∈ ZN2 such that gcd(L(gλ mod
N2), N) = 1, where N = pq, λ = lcm(p − 1, q − 1). Note that public key is
(g, N) and private key is p, q. For the encryption phase, let m be a plaintext to
be encrypted, r be a random number chosen from ZN , and E be an encryption
function defined by

e = E(m) = gmrN mod N2. (3)

For decryption phase, the decrypted ciphertext m′ is obtained by

m′ = D(e) =
L(eλ mod N2)
L(gλ mod N2)

mod n, (4)

where L(t) = (t− 1)/N .

2.3 Asymmetric Watermark Detection [2]

Minematsu proposed an asymmetric watermark scheme [2] in 2000. His scheme
applies patchwork watermark detection by using homomorphic public-key en-
cryption in order to detect watermark with exposing no secret information
used in embedding process. A verifier possesses an embedded image and sends
the image to a key authority for watermark verification either watermark ex-
ists or not. As homomorphic encryption algorithm, he uses Okamoto-Uchiyama
encryption [3].

2.4 Secure Watermark Detection [4]

Furukawa proposed a secure patchwork watermark detection protocol by adopt-
ing Paillier encryption. The primal idea of this method is nearly same as [2].
However, the detection scheme is modified so that verifier can prove validity of
results without revealing secret information. With proof of validity, the scheme
prevents dishonest users from cheating a key authority.

In this protocol, detection is carried out by verifying a ciphertext which con-
tains the indexes of the modified pixels. Due to its unique property of Paillier
encryption, the watermark information is encoded as exponents of the cipher-
text. In other words, the indexes of the modified pixels are never exposed to a
verifier even after the extraction process is carried out.

An author defines threshold τ , and number of pixels l, and chooses random
subsets A, B ⊂ {1, . . . , l}. He also generates a pair of public key and private key
of Paillier encryption. He then generates ciphertext (e1, . . . , el) such that

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 169

ei =

⎧⎨⎩E[1] if i ∈ A,
E[−1] if i ∈ B,
E[0] otherwise.

In watermark extraction scheme, a verifier who posses the embedded image
I ′ = (z1, . . . , zl) computes e =

∏l
i=1 ezi

i , and sends e to a trusted key authority.
In watermark detection process, the verifier identifies watermark message ω as

ω =
{

0 if D(e) < τ,
1 if D(e) ≥ τ.

For more detail, refer [4].

3 Proposed Scheme

3.1 Outline

To resolve the problem of the symmetric property of watermark system, our
approach employs a concept of public-key encryption protocol to conceal the
indexes of the modified pixels against the verifier. In order to assure a trust
between an author and verifier, extraction process requires cooperation of a
third party, who holds a private key of El Gamal encryption.

A drawback of [4] is the heavy overhead of Paillier encryption, which is re-
placed by El Gamal encryption in our scheme. Since patchwork watermark only
needs to determine the sum of differences to be close to either 0 or 2nδ, it is
possible to examine all possible messages, i.e., g0, or g2nδ. Note that we examine
2nδ (not 2δ as shown in equation 2) in our scheme, because of cryptographi-
cal reason. Moreover, El Gamal encryption is a lighter process, and thus more
efficient than Paillier encryption.

3.2 Model

In this section, we describe a model of our scheme using three entities, Alice,
Bob, and Kevin, representing an author, a verifier, and a key authority.

Assume, Alice embeds information into the contents, Bob verifies the water-
mark, and Kevin generates a secret key sk and public key pk for El Gamal
encryption. Not only does interposal of the third party enhance the reliability of
verification, but also prevent the author from cheating a verifier, and vise versa.
Note that Kevin needs not to be trustworthy. He does not know the embedding
key, the indexes of modified pixels specified by Alice.

Let I = (x1, . . . , xl) be an original image, I ′ = (z1, . . . , zl) be an embedded im-
age, and l be number of pixels in image I and I ′. We illustrate our model in Fig. 2.

3.3 The Proposed Protocol

Kevin generates an El Gamal public key, y = gx mod p, where secret key is x.
Let EXT be conversion function in second step, and IDENTIFY be a function
to obtain ω at the final step, respectively.

170 M. Okada and H. Kikuchi

Fig. 2. The Model of the Proposed Scheme

STEP 1: (Embedding). Alice generates random numbers by giving a seed to
pseudo-random generator, and obtains subsets A and B of set of indexes
{1, 2, . . . , l} such that A ∩ B = φ and |A| = |B| = n. She chooses δ and
modifies pixels according to (A, B) in the image I to generate I ′ as

zi =

⎧⎨⎩xi + δ if i ∈ A,
xi − δ if i ∈ B,
xi otherwise,

for i = 1, ..., l. Alice computes e, a ciphertext of (A, B) as e = (c1, . . . , cl,
d1, . . . , dl), where ci = gmiyri , di = gri mod p,

mi =

⎧⎨⎩1 if i ∈ A,
−1 if i ∈ B,
0 otherwise,

and ri is random number of Zq, for i = 1, . . . , l. Finally, Alice sends I ′ =
(z1, . . . , zl) to Bob in conjunction with encrypted indexes e = (c1, . . . , cl,
d1, . . . , dl).

STEP 2: (Extracting). Bob computes ciphertext e′ = EXT (I ′, e) = (C, D)
as follow;

C = cz1
1 cz2

2 · · · czl

l =
l∏

i=1

gmiziyrizi = g
l miziy

l rizi = gSnyR,

D = dz1
1 dz2

2 · · · dzl

l =
l∏

i=1

grizi = gR,

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 171

where R =
∑l

i=1 rizi mod q, and Sn is the sum of difference in patchwork
watermark scheme, i.e., Sn = 2nδ, and then sends e′ to Kevin.

STEP 3: (Decrypting). Kevin uses his private key x to decrypt e′ = (C, D)
as M = D(e′) = C/Dx = gSn , and then sends back the decrypted text M
to Bob.

STEP4: (Identifying). Bob identifies exponent k of M as IDENTIFY (M)
such that M = gk by testing for all possible k = 1, 2, . . . , q. He obtains the
hidden message ω by

ω =
{

0 if k < τ,
1 if k ≥ τ ,

where τ is the threshold.

4 Evaluation

4.1 Security

Security of patchwork watermark relies on the following facts. First, the embed-
ding key A and B, the indexes of the modified pixels are uniformly distributed
over {1, . . . , l}. The distribution of (A, B) is illustrated in Fig. 3(b), where white
dots represent (A, B). Hence, it is almost impossible to attack to determine
(A, B) in I ′ without the knowledge of the embedding key. Second, the property
that the original image is not required in extraction process improves security
against watermark removal due to a leakage of the original image. Third, since
the brightness of some of the pixels has slightly changed, the difference is hardly
perceptible. Fig. 3(a) illustrates an example of a single-bit information being
embedded into Lena (256×256 pixels, 256 gray scale level) with the parameters
of n = 2053, and δ = 3. The SNR for Fig. 3(a) is 50.6[dB] which is considered to
be acceptable. Therefore, we can conclude that it is hard to retrieve the hidden
message from given image I ′ as well as ordinary patchwork algorithm.

We discuss security of El Gamal encryption and robustness against manipu-
lation attacks. From given image I ′ and ciphertext e, Bob learns nothing about
embedding key A and B, under the assumption of difficulty of discrete logarithm
problem. From given ciphertext (C, D) sent from Bob, Kevin knows neither the
image I ′ nor (A, B), which has been accumulated into the ciphertext.

4.2 Optimal Parameter

In this section, we discuss an optimal parameter δ in the sense that the least
number of δ with an accuracy of 95% succeeds in detection.

Let σ′ be standard deviation of n samples of (ai − bi), and σ be standard
deviation of the average value S̄i. Noting the well-known relation of variances,
σ = σ′/n, we can predict true σ from the sampled σ′. Hence, variance of average
Sn decreases as n increases. In other words, an accuracy of Sn increases along
with the increment of n. In order to achieve 95% confidence for detection, under
an assumption of normal distribution, the embedded image should be shifted by
at least 2σ which is identical to δ.

172 M. Okada and H. Kikuchi

(a) Embedded Image (b) Distribution of A and B

Fig. 3. Embedded Image and Distribution of A and B

Table 1. Parameters for δ Determination

n μ σ′ σ δ

4613 0.8847 67.4449 0.4769 2
2053 1.9206 67.9670 1.5000 3
1165 -0.4335 68.2865 2.0007 4
757 -1.3805 68.8136 2.5011 5
539 -2.0260 69.7601 3.0048 6

The parameters, average of Sn, μ, standard deviation σ, and optimal δ with
respects to n are demonstrated on Table 1, and the optimal δ given n is obtained
from Fig. 4. Note that the false positive of 5% with the following δ is not sufficient
to practical use. In order to make an image more robust, δ could be increased
taking consideration of subjective evaluation.

Fig. 4. Optimal δ Distribution

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 173

For the sake of determination of δ, we study the relation between number of
modified pairs of pixels n and quality of image, which is estimated by means of
Signal to Noise Ratio defined by,

SNR = 10 · log10
2552

MSE2 = 10 · log10
255 · 255

1/l
∑

(xi − zi)2
,

where MSE is the mean-square error between I and I ′. Lena of 256×256 pixels is
used for this test with the parameters in Table 1. Fig. 4 indicates no significant
difference between n = 2053 and n = 4613. This implies the parameter of n >
2053, which is δ = 3, is the optimal choice to prevent the embedded image from
being spoiled, under the condition that SNR is almost the same.

4.3 Implementation System

In order to estimate a total performance of the proposed scheme, we implemented
watermark embedding and extracting process for gray scale images in C. Crypto-
graphic computations are implemented in Java. Environment specifications are
described in Table 2.

Table 2. Implementation Environment

Detail Specification
CPU Xeon 2.3GHz
OS Redhat 9.0, Linux 2.4.20

Memory 1GB
Encryption Algorithms 1024-bit El Gamal,

1024-bit Paillier
Programming Languages J2SDK 1.4.2,

gcc 3.3.3

.

Fig. 5. The Relation between Number of Modified Pairs of Pixels n and SNR

174 M. Okada and H. Kikuchi

Fig. 6. Processing Time for Embedding

4.4 Performance

We use Lena as a host image I in three different sizes; l =64×64, 128×128, and
256×256 pixels to perform embedding, encrypting, decrypting, and extracting
processes.

Watermark Embedding Scheme. Embedding processing time for image size
l is illustrated in Fig. 6, which is performed in C. Time consumption increases
proportionally to image size l.

Ciphertext e Generation in El Gamal Encryption. A single 1024-bit El
Gamal encryption and decryption time are 0.104 [s], and 0.077 [s], respectively.
The generation of e takes time in proportion to the number of pixels l, shown in
Table 3.

Processing Time for Watermark Verification. Watermark verification pro-
cess, second step of proposed protocol is preformed by Bob, and is supposed to
be linear to the size of images. The samples of time consumption with respect
to l, 64×64, 128×128, and 256×256 are taken in Table. 4.

Table 3. Prcessing Time for Generating Ciphertext e

Image Size l 64×64 128×128 256×256
Processing Time [s] 654.840 2620.57 10496.0

Table 4. Processing Time for Watermark Verification

Image Size l 64×64 128×128 256×256
Processing Time [s] 5.68 22.07 88.52

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 175

Table 5. Total Verification Processing Time

Image Size l 64×64 128×128 256×256
Average Processing Time [s] 11.562 26.875 93.876

standard deviation 0.8277 0.8356 0.7750

Fig. 7. Processing Time for Total Watermark Verification

Processing Time for Total Watermark Verification. Bob needs to send
ciphertext to Kevin and requests him to perform decryption, which is indepen-
dent from the size of image. Total time required for the whole verification process
including identification process with respect to the number of n pairs is shown
in Table 5, and Fig. 7.

Fig. 8. JPEG Compression Attack

176 M. Okada and H. Kikuchi

Fig. 9. Add Noise Attack

Table 6. Add Noise Attack

Noise Level[%] 5 15 25 35
Sn 6.8378 4.3064 3.1173 2.7681

4.5 Robustness Against Image Manipulation Attack Using
StirMark

We evaluate the robustness of patchwork watermarking against attack of “Add
Noise”, and “JPEG Compression” using StirMark [7] [8]. We have used I ′ origi-
nated from Lena (256× 256 pixels, 256 gray scale level), with the parameters of
n = 2053, δ = 3, and S̄′

n=6.9547. With this sample image, we applied extract-
ing process with the parameter of τ=3 for all attacked images I ′. We confirmed
verification as bellow.

In JPEG compression attack, we confirmed verification successfully up to 80%
of JPEG quality level as shown in Fig. 8. In Add Noise attack, we confirmed
success as shown in Fig. 9, and Table 6. The noise level represents that of nor-
malized from 0 to 100 such that 0 gives an identity function and 100 gives a
complete random image. In the figure, we indicate the threshold level of τ = 3
by which watermark extractions are confirmed.

4.6 Comparison Between Furukawa’s Method and the Proposed
Scheme

Essential difference between Furukawa’s scheme [4] and the proposal scheme
comes from the cryptographical primitives, that is, El Gamal and Paillier en-
cryption. Fig. 10 shows the processing time of extracting phase in El Gamal and

Secure Asymmetric Watermark Detection Without Secret of Modified Pixels 177

Fig. 10. Processing Time of Proposed Scheme and that of [4]

Table 7. Processing Time in Watermark Detecting

n 539 757 1165 2053 4613
Proposed Scheme (El Gamal) 5.279 6.475 7.697 9.590 13.47

[4] (Paillier) 19.11 19.11 19.11 19.11 19.11

Paillier encryptions. We examine processing time for all cases in Table 1. Each
of cases is provided average of ten samples of different seeds. The values used to
plot in Fig. 10 are shown in Table 7.

For El Gamal encryption, the processing time includes decrypting and identi-
fying process, whereas Paillier encryption includes only decrypting process. The
processing time of El Gamal increases proportionally to n, while processing time
of Paillier encryption remains the same since we only needs to perform exact
one decryption to extract watermark.

Supposing the processing time follows linearly to n as illustrated in Fig. 10,
Paillier processing time would crosse over that of El Gamal at n∗=7403, where El
Gamal processing time is estimated by y = 0.0019x+5.0446. From the result, we
can say that our scheme is superior to Furukawa’s method [4] with the condition
when n is less than or equal to n∗.

5 Conclusions

We have proposed secure watermark detection scheme by hybridizing patchwork
watermarking and asymmetric cryptography protocol. The experiment proves
that our method has fulfilled the primal requirement that reduces the risk in
an extraction process by concealing the secret information. Experimental results
also show that detection processes take time proportional by the size of images,
with the size of 256×256, which takes approximately 93 second for detection.

178 M. Okada and H. Kikuchi

From the above, we can conclude that our proposed scheme is more efficient than
Furukawa’s one [4] for the case when a number of the modified pairs of pixels is
n < 7403.

We will proceed to enhance our method. First, we consider the improvement
of success detection. This problem can be solved by applying an error correction
coding technology. Second, we try to reduce the high communication cost of
e sent from Alice to Bob. For example, the size of e for k bit embedding in
an image (l = 256 × 256) using the proposed method will approximately be
|e| = 1024× 2 × l × k, which should be smaller. We are certain that by solving
the issues, our scheme would be made more reliable and practical.

Acknowledgement

We would like to acknowledge the precious suggestion and corrections provided
Dr.Yasuhiko Matsuda, an emeritus professor in Yokohama National University,
and Mr.Junji Nakazato, a Ph.D. candidate in Tokai University, as well as anony-
mous referees for their support.

References

1. W. Bender, D. Gruhl, N. Morimoto “Technique for Data Hiding”, SPIE, vol.2020,
pp. 2420-2440, 1995.

2. K. Minematsu, “On a Secure Digital Watermark Detection Protocol Using Patch-
work Watermarking”, ISITA 2000, pp. 673-676, 2000.

3. T. Okamoto and S. Uchiyama, “A New Public-key Cryptosystem as Secure as Fac-
toring”, Enrocrypt’ 98, LNCS 1403, pp. 308-318, 1998.

4. J. Furukawa, “Secure Detection of Watermarks”, IEICE Trans., vol. E87-A, no. 1,
pp. 212-220, 2004.

5. T. El Gamal, “A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms”, IEEE Trans., IT-31, 4, pp. 649-472, 1985.

6. P. Paillier, “Public-key Cryptosystems based on Composite Degree Residuosity
Classes”, Proc. of Eurocrypt’99, LNCS 1525, pp. 223-238, 1999.

7. Fabin A. P. Petitcolas, Ross. J. Anderson, and Markus. G. Kuhn. “Attacks on
Copyright Marking Systems”, Information Hiding, Second International Workshop
IH’98, LNCS 1525, pp. 219-239, 1998.

8. Fabin A. P. Petitcolas, “Watermarking Schemes Evaluation”, IEEE Signal Process-
ing, vol.17, no. 5, pp. 58-64, 2000.

Kimchi: A Binary Rewriting Defense Against
Format String Attacks

Jin Ho You1, Seong Chae Seo1, Young Dae Kim1, Jun Yong Choi2,
Sang Jun Lee3, and Byung Ki Kim1

1 Department of Computer Science, Chonnam National University,
300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea

{jhyou, scseo, utan, bgkim}@chonnam.ac.kr
2 School of Electrical Engineering and Computer Science,
Kyungpook National University, Daegu 702-701, Korea

jychoi@ee.knu.ac.kr
3 Department of Internet Information Communication, Shingyeong University,

1485 Namyang-dong, Hwaseong-si, Gyeonggi-do 445-852, Korea
aura88@empal.com

Abstract. We propose a binary rewriting system called Kimchi that
modifies binary programs to protect them from format string attacks in
runtime. Kimchi replaces the machine code calling conventional printf
with code calling a safer version of printf, safe printf, that prevents its
format string from accessing arguments exceeding the stack frame of the
parent function. With the proposed static analysis and binary rewriting
method, it can protect binary programs even if they do not use the frame
pointer register or link the printf code statically. In addition, it reduces
the performance overhead of the patched program by not modifying the
calls to printf with the format string argument located in the read-only
memory segment, which are not vulnerable to the format string attack.

1 Introduction

Since the format string vulnerability was discovered in 1999 [1], 30∼40 format
string vulnerabilities have been reported every year [2], causing serious software
security problems [3, 4, 5].

Format string vulnerability occurs when a format string argument of the
printf family function in the standard C library includes a user input string
which can be manipulated by an attacker; the attacker can execute arbitrary
malicious code by modifying the program’s critical memory using this vulnera-
bility [5, 6, 7, 8, 9].

Previous research into the detection of and defense against format string vul-
nerability has led to the following recommended safe guards:

– Type qualifiers [10]: detect format string vulnerabilities in C source code by
the taint propagation analysis using type qualifiers before compile time;

– FormatGuard [5]: automatically replaces printf function calls in the source
program with calls to a protected version of printf at compile time;

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 179–193, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 J.H. You et al.

– libformat [11], libsafe [12]: link to the protected version of printf instead
of the original in the standard library at program loading time;

– TaintCheck [13]: traces a process’s running code and checks whether an
external user input is included in the format string at program execution
time.

Though the static analysis of binary programs is more difficult compared
with source programs, the security protection provided by rewriting the binary
program is expedient when we can neither rebuild it from the patched source code
nor obtain the patched binary program from the vendor in a timely manner [14];
or when a malicious developer might introduce security holes deliberately in the
binary program.

There are limitations to the previous binary program level protection tools.
Libformat and libsafe can treat only the binary programs to which the shared
C library libc.so is dynamically linked, and libsafe requires the program to be
compiled to use a frame pointer register. TaintCheck slows the traced program
execution by a factor 1.5 to 40 [13]. Because it runs a binary program in traced
mode similar to a debugger monitoring all running binary code while tracing
the propagation paths of user input data—incurring a significant amount of
overhead.

We propose a tool called Kimchi for the UNIX/IA32 platform that modifies
binary programs—even if they are statically linked to the libc library, or they do
not use a frame pointer register—to prevent format string attacks at runtime.
Kimchi inserts an additional binary code block including a protected version
of printf into the binary program, and replaces the original printf calls with
those to the protected version. The protected printf inhibits the attack by
preventing the format string from accessing memory beyond the stack frame
address of its parent function. Kimchi can protect any binary program that
does not use a frame pointer register by the static analysis of run-time change
in stack frame depth. In addition, it reduces the performance overhead of the
patched program by leaving unchanged the calls to printfwith the format string
argument located in the read-only memory segment, which are not vulnerable
to the format string attack.

The rest of the paper is organized as follows. Section 2 explains format string
vulnerability. Section 3 describes the runtime defense against format string at-
tacks in the rewritten binary program. Section 4 describes the structure of Kim-
chi and its binary rewriting processes. Section 5 shows the results of performance
overhead testing. Finally, Section 6 presents our conclusion and future work.

2 Format String Attack

The given example C program, myecho.c, in Fig. 1, which simply echoes its first
command argument string, has a printf function call code at line 4 with a
vulnerable format string.

As shown in Fig. 2, the second execution of myecho with the command argu-
ment “%x %x %x %9$d %12$d %62$s” displays a strange result; the printf call

Kimchi: A Binary Rewriting Defense Against Format String Attacks 181

1: int main(int argc, char *argv[])
2: {
3: if (argc > 1)
4: printf(argv[1]);
5: printf("\n");
6: }

Fig. 1. A format string vulnerable C program, myecho.c

$./myecho ’hello, world’
hello, world

$./myecho ’%x %x %x %9$d %12$d %62$s’
0 bfe04cb8 80483d6 10 2 USER=hacker

Fig. 2. An execution of myecho.c

low address

high address stack memory

· · ·
local variables

saved fp
return addr
parameters

parent
func’s

stack frame

frame
pointer

?
2
1

format str
return addr

saved fp

printf
func’s

stack frame frame
pointer

%d%d%d%100$n%101$n

void parent(int parameters)
{

int localvariables;
printf("%d%d%d%100$n%101$n",1,2);
return;

}

int printf(char *format, ...)
{

...
}

Fig. 3. A stack frame for a running function

at line 4 is printf("%x %x %x %9$d %12$d %62$s"), which does not have any
arguments corresponding to the format control characters. The vulnerable code
must be changed to printf("%s", argv[1]).

The previous printf implementations do not verify whether the accesses to
the arguments corresponding to each % directive in a format string are valid [5].
It permits a malicious user to put % directives into the user provided input
that will be inserted into the printf format string—leading the format string
vulnerability.

Figure 3 shows the stack which a stack frame is being created while a function
is running. A running function creates a stack frame where stores arguments, a
return address, a saved frame pointer, and local variables. Figure 3 shows the
stack memory layout while printf("%d%d%d%100$n%101$n", 1, 2) is running;
the function arguments are pushed onto the stack.

182 J.H. You et al.

low address

high address stack memory

· · ·
local variables

saved fp
return addr
parameters

parent
func’s

stack frame

frame
pointer

second
defense line

?
2
1

format str
return addr

saved fp

printf
func’s

stack frame frame
pointer

%d%d%d%100$n%101$n

first
defense line

· · ·
· · ·

0xbeebebee
· · ·user’s

input

%n modifies
critical data

arg1

arg2

arg3

arg100

arg101

access
violation

format string
attack

Fig. 4. printf call and format string attack

The printf function reads the arguments corresponding to each % directive
on the stack. In the example shown in Fig. 4, the first two %ds’ accesses to the
printf’s actual parameters arg1(1) and arg2(2) respectively are valid; while the
%100$n’s access to arg100—which is not a parameter of printf—is not valid.
However, previous implementations of printf permit such invalid accesses.

Printf stores the total number of characters written so far into the integer
indicated by the int ∗ (or variant) pointer argument corresponding to the %n
directive. In Fig. 4, arg100 located in the manipulated user input has 0xbeebebee,
the location of the return address of printf. Thus, printf will overwrite and
change its return address processing the %100$n directive. It will interrupt the
control flow of the program; the attacker can execute arbitrary binary code under
the program’s privilege. There are many ways to change the program’s control
flow by overwriting critical memory [7, 8, 9].

There are two types of functions related to the format string in the standard
C library: the printf family and the vprintf family. Functions in the printf family
in the GNU glibc library are as follows:

#include <stdio.h>

int printf(const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);
int sprintf(char *str, const char *format, ...);
int snprintf(char *str, size_t size, const char *format, ...);

#include <syslog.h>

void syslog(int priority, const char *format, ...);

Kimchi: A Binary Rewriting Defense Against Format String Attacks 183

#include <err.h>

void err(int eval, const char *fmt, ...);
void errx(int eval, const char *fmt, ...);
void warn(const char *fmt, ...);
void warnx(const char *fmt, ...);

Functions in the vprintf family in the GNU glibc library are as follows:

#include <stdarg.h>

int vprintf(const char *format, va_list ap);
int vfprintf(FILE *stream, const char *format, va_list ap);
int vsprintf(char *str, const char *format, va_list ap);
int vsnprintf(char *str, size_t size, const char *format, va_list ap);
void vsyslog(int priority, const char *format, va_list ap);

#include <stdarg.h>

void verr(int eval, const char *fmt, va_list args);
void verrx(int eval, const char *fmt, va_list args);

void vwarn(const char *fmt, va_list args);
void vwarnx(const char *fmt, va_list args);

In the case of the printf family, the argument values corresponding to the
format directives are passed as parameters and stored in the stack frame. On
the other hand, in the case of the vprintf family, a pointer to the argument vector
is passed as a parameter; the arguments can be located at stack or other places.
Thus, the protection method of the vprintf family is different from the printf
family. Format string vulnerabilities can arise in both families; Kimchi, however,
can treat only the printf family currently.

The following shows two real-world examples of the format string vulnerability
reported in the current literature:

– proftpd-1.2.0pre6 FTP server’s source code
at line 782 in proftpd-1.2.0pre6/src/main.c in 1999 [1]

snprintf(Argv[0], maxlen, statbuf);
instead of

snprintf(Argv[0], maxlen, "%s", statbuf);
– bind-4.9.5 DNS server’s source code

at line 353 in bind-4.9.5/named/ns forw.c(CVE-2001-0013) [4]
syslog(LOG_INFO, buf);

instead of
syslog(LOG_INFO, "%s", buf);

3 Runtime Defense Against Format String Attacks

Kimchi rewrites a binary program to redirect printf calls to safe printf, the
protected version of printf. We explain, in this section, how our safe printf
defends against format string attacks in runtime.

184 J.H. You et al.

3.1 The Detection of Format String Attacks

The defense against format string attacks is to prevent % directives from accessing
arguments which are not real parameters passed to printf. An adequate solution
is to modify printf so that it counts arguments and checks the range of argument
accesses of the directives for preventing access beyond “the first defense line” as
shown in Fig. 4.

However, it is not easy to analyze the types of stack memory usage of the
optimized or human written binary code [15, 16]. Kimchi protects from accessing
arguments beyond “the second defense line”—i.e. the stack frame address of the
parent function of printf: it is a weaker protection method than the one to
protect from accessing arguments beyond “the first defense line”.

The improved version of printf, safe printf checks the existence of the
argument access violation of % directives while parsing the format string. And
then, if all of them are safe, safe printf calls the real printf, otherwise, regards
the access violation as a format string attack and runs the reaction procedure
of attack detection.

The reaction procedure optionally logs the attack detection information
through syslog, and terminates the process completely or returns −1 imme-
diately without calling the real printf. The reaction of just terminating the
process can be used as another DoS attack; ignoring the printf call might be
much safer unless its side effect is not dangerous.

This same defense method is applied to other functions in the printf family:
fprintf, sprintf, snprintf, syslog, warn, and err.

3.2 The Analysis of Change of Stack Frame Depth

Our detection method needs to know the stack frame address of the parent
function of safe printf; its relative distance to the stack frame address of
safe printf is passed to safe printf.

If the parent function uses a frame pointer register storing the base address of
the stack frame, safe printf can get the parent’s stack frame address easily by
reading the frame pointer register; otherwise, the relative stack frame address of
the parent function is previously calculated by static analysis of the change in
the stack pointer at the parent function during Kimchi’s binary rewriting stage.

We can determine whether a function uses the stack frame pointer register by
checking the presence of prologue code which sets up the frame pointer register
%ebp as shown in Fig. 5.

3.3 An Algorithm for Stack Frame Depth Calculation

The stack frame depth at any given node of the machine code control flow graph
is defined as the sum of changes in the stack pointer at each node on the execution
path reachable from function entry.

The static analysis calculates the stack frame depth at the node calling
printf, and determines whether this value is constant over all reachable ex-
ecution paths to the node. The problem is a kind of data flow analysis of con-
stant propagation [17, 18]; we use Kildall’s algorithm giving the maximal fixed

Kimchi: A Binary Rewriting Defense Against Format String Attacks 185

foo:
pushl %ebp ;save old frame address
movl %esp, %ebp ;setup frame pointer
subl $256, %esp ;reserve local area
...
movl -16(%ebp), %eax ;frame relative address
...
leave ;restore old frame address
ret

Fig. 5. A typical function code pattern using frame pointer register

point(MFP) solution. For a given basic block B in the control flow graph CFG
of a function, we define IN(B) and OUT (B) as the stack frame depth at the
entry and the exit of B:

OUT (B) =
{−addrsz if B is a function epilogue

IN(B)⊕ δB otherwise, (1)

where δB is the increment amount of the stack pointer by B and the operation
x⊕ y is defined as following:

�
��x

y � m ⊥
� � m ⊥
n n n + m ⊥
⊥ ⊥ ⊥ ⊥

where m and n are integers;

IN(B) =
{

0 if B is entry∧{OUT (B′)|B′ is a predecessor of B} otherwise, (2)

where ∧ is the meet operator over the flat lattice of integers:

�

�����������������������

���������������

��
��

��
��

��
��

��
��

��������������

��������������������

. . . −3 −2 −1 0 1 2 3 . . .

⊥

�����������������������

															

��������

��������������

Algorithm 1 calculates the stack depth of each basic block. The value ⊥ of
IN(B) means that the stack frame depth is not constant at B and � means
undefined.

If the stack frame depth is not constant, Kimchi will not modify the printf
call, and just reports a warning. In general, typical binary code automatically
generated by a C compiler does not have such variable stack frame depth at the
same location of the function call instruction: the compiler itself also analyzes
changes in stack frame depth by static analysis.

186 J.H. You et al.

Algorithm 1. The stack depth calculation algorithm

forall B in CFG do1

IN(B) ← �;2

OUT (B) ← �;3

end4

IN(Bentry) ← 0;5

Q← {Bentry};6

while Q is not empty do7

B ← delete from Q;8

calculate IN(B);9

OUT (B)old ← OUT (B);10

calculate OUT (B);11

if OUT (B) �= OUT (B)old then12

add successors of B to Q ;13

14

end15

4 Binary Rewriting Defense Against Format String
Attacks

In this section, we describe how Kimchi modifies binary programs so that pre-
vious calls to printf are redirected to the safe version, safe printf.

4.1 The Structure of Kimchi

Figure 6 describes the structure of Kimchi. The binary rewriting process consists
of six subprocesses: (1) the disassembly of binary code, (2) the search of printf
calls, (3) the construction of the control flow graph(CFG), (4) the analysis of
stack frame depth, (5) the construction of patch information, and (6) the creation
of the patched binary program.

�� ��
�� �	

printf address
extracter

�� printf address

��

binary program

��

��
�� ��

�� �	
format string
attack patcher

�� patched
binary program

Fig. 6. The structure of Kimchi

Kimchi: A Binary Rewriting Defense Against Format String Attacks 187

.FMT: .string "%d%d%d%100$n"
foo:

pushl %ebp ; setup frame pointer
movl %esp, %ebp ;
subl $24, %esp ; alloc local var mem
subl $4, %esp ; typical pattern of
pushl $2 ; function call
pushl $1 ;
pushl $.FMT ; printf(.L0,1,2);
call printf ;
addl $16, %esp ;
leave ; reset frame pointer
ret ; return

(a) The original code

.FMT: .string "%d%d%d%100$n"
foo:

pushl %ebp
movl %esp, %ebp
subl $24, %esp
subl $4, %esp
pushl $2
pushl $1
pushl $.FMT
call safe_printf_fp
addl $16, %esp
leave
ret

safe_printf_fp: ;INSERTED CODES
movl %ebp, %eax
subl %esp, %eax
subl $8, %eax
pushl %eax ;call
call safe_printf ;safe_printf(%eax,
addl $4, %esp ;retaddr,format,...)
ret

safe_printf:
...

(b) The rewritten code

Fig. 7. An example of the modification of a call to printf in a function using the frame
pointer register

.FMT: .string "%d%d%d%100$n"
foo: ; STACK CHANGE (0)

pushl %ebp ; %esp -= -4 (-4)
movl %esp, %ebp ; %ebp = %esp(-4)
subl $24, %esp ; %esp -= 24 (-28)
subl $4, %esp ; -= 4 (-32)
pushl $2 ; -= 4 (-36)
pushl $1 ; -= 4 (-40)
pushl $.FMT ; -= 4 (-44)
call safe_printf_fp ; += -4+4 (-44)
addl $16, %esp ; += 16 (-28)
leave ; = %ebp+4(0)
ret ; += 4 (+4)

safe_printf_fp:
movl %ebp, %eax ;calculate
subl %esp, %eax ;stack depth: %eax
subl $8, %eax ; = %ebp - %esp - 8
pushl %eax ;call
call safe_printf ;safe_printf(%eax,
addl $4, %esp ;retaddr,format,...)
ret

safe_printf:
...

stack
depth=36

passed to
safe printf

0xbeebebee - 0 ret addr
-4 %ebp %ebp

-28
-32
-36 2
-40 1
-44 .FMT
-48 ret addr
-52 36 %esp

Fig. 8. An example of the stack change and the arguments passed to safe printf in a
function using the frame pointer register

4.2 Rewriting the Binary Program

In the proposed binary rewriting method of Kimchi, printf calls in the function
using the stack frame pointer are replaced with calls to safe printf fp as in
the example shown in Fig. 7; otherwise, for functions not using the stack frame
pointer, printf calls are replaced with calls to safe printf n as shown in Fig. 9,
where n is the stack frame depth of the current function at the time it calls
printf: this value is calculated by static analysis in Sect. 3.3.

Figure 8 shows how safe printf fp calculates the parent’s stack frame depth,
pushes it onto the stack, and calls safe printf.

188 J.H. You et al.

.FMT: .string "%d%d%d%100$n"
foo:

subl $12, %esp
subl $4, %esp
pushl $2
pushl $1
pushl $.FMT
call printf
addl $16, %esp
addl $12, %esp
ret

(a) The original binary code

.FMT: .string "%d%d%d%100$n"
foo: ; STACK CHANGE (0)

subl $12, %esp ; %esp = -12
subl $4, %esp ; = -16
pushl $2 ; = -20
pushl $1 ; stack depth = -24
pushl $.FMT
call printf
addl $16, %esp
addl $12, %esp
ret

safe_printf_sp_24: ; INSERTED CODES
pushl $24 ; stack depth = 24
call safe_printf
addl $4, %esp
ret

safe_printf:
...

(b) The rewritten binary code

Fig. 9. An example of the modification of a call to printf in a function not using the
frame pointer register

Before translation

ELF header

other sections. . .

.text section
. . . call printf . . .
. . . call printf . . .
. . . call printf . . .
. . . call printf . . .

other sections. . .

After translation

ELF header

other sections. . .

.text section
. . . call safe printf fp . . .
. . . call safe printf 32 . . .
. . . call safe printf 64 . . .
. . . call safe printf fp . . .

.text.safe format section
safe printf fp: . . .
safe printf 32: . . .
safe printf 64: . . .
safe printf: . . .

other sections. . .

Fig. 10. The structure of the modified binary program

Kimchi inserts a binary code section named .text.safe format section,
which places the protected safe printf function into the binary program; it
replaces previous calls to printf with those to safe printf as shown in Fig. 10.
The inserted code section is placed at an address location lower than and not
used by any other code sections so as not to corrupt the program’s behaviour.

The inserted binary code forms like the one shown in Fig. 11.

4.3 Read-Only Format String

A printf call with a constant format string argument located in a read-only
memory region is not affected by format string attacks, because the attack is
possible only when it is modifiable. Therefore, printf calls with constant format
strings do not need to be protected. Kimchi skips the printf calling codes of
pattern: a pushl $address instruction directly followed by call printf, where
the address is located in a read-only memory region, as shown in Fig. 12. We
can get read-only memory regions from the section attribute information of the
binary program file as shown in Fig. 12 [19].

Kimchi: A Binary Rewriting Defense Against Format String Attacks 189

.section .text.safe_format:
safe_printf_48:

pushl $48
jmp call_safe_printf

safe_printf_56:
pushl $56
jmp call_safe_printf
.
.

safe_printf_fp:
movl %ebp, %eax
subl %esp, %eax
push %eax
jmp call_safe_printf

call_safe_printf:
call safe_printf
addl $4, %esp
ret

void safe_printf(int parameter_range,
int return_address, char *format, ...)

{
if (format is safe) {

va_start(ap, format);
vprintf(format, ap);
va_end(ap);

} else {
/* format string attack detected! */
...

}
}

Fig. 11. The .text.safe format section

printf call with Constant Format String

C code: printf("%d %d %d %100$n", 1, 2);
Binary code:
804836e: 83 ec 04 sub $0x4,%esp
8048371: 6a 02 push $0x2
8048373: 6a 01 push $0x1
8048375: 68 88 84 04 08 push $0x8048488
804837a: e8 31 ff ff ff call 80482b0 <printf>
804837f: 83 c4 10 add $0x10,%esp

ELF binary file information

foo: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
13 .rodata 00000015 08048480 08048480 00000480 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

Contents of section .rodata:
8048480: 03000000 01000200 25642564 25642531%d%d%d%1
8048490: 3030246e 00 00$n.

Fig. 12. An example of a read-only constant string

190 J.H. You et al.

4.4 Searching the printf Function Address

In case libc library is dynamically linked to the binary program, Kimchi can get
the address of the printf function from the dynamic relocation symbol table in
the binary program, as shown in Fig. 13. Otherwise, Kimchi searches the address
of the printf code block in the binary program by a pattern matching method
using the signature of binary codes as shown in Fig. 14 [20, 21].

foo: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
08049578 R_386_GLOB_DAT __gmon_start__
08049588 R_386_JUMP_SLOT __libc_start_main
0804958c R_386_JUMP_SLOT printf

Fig. 13. An example of a dynamic relocation records in ELF binary program

the signature of _IO_vfprintf in glibc-2.3.4/Linux i686

5589e557 565381ec bc050000 c78558fb ffff0000 0000e8XX XXXXXX8b 108b4d08
89953cfb ffff8b51 5c85d2c7 8538fbff ff000000 00750cc7 415cffff ffffbaff
ffffff42 b9ffffff ff752e8b 75088b16

Fig. 14. An example of a signature of binary codes

5 Performance Testing

We implemented a draft version of proposed tool Kimchi, which is still under
development. Figure 15 shows a screen shot where this tool modifies the binary
program myecho in Fig. 1. Figure 16 shows a screen shot where the re-written
version of myecho detects the format string attack and reports the related infor-
mation. Later the detection report is sent to syslog server.

We measured the marginal overhead of Kimchi protection on printf calls
with a tight loop as shown in Fig. 17. The experiment was done under single-
user mode in Linux/x86 with kernel-2.6.8, Intel Pentium III 1GHz CPU and
256MB RAM.

Experiments shows that safe sprintf and safe fprintf have more 29.5%
marginal overhead than the original sprintf and fprintf. Safe printf has
more 2.2% marginal overhead than printf due to its heavy cost of terminal
I/O operation.

The overall performance overhead of the patched program is much smaller,
because general programs have just a few printf calls with non-constant format
strings.

Kimchi increases the size of binary programs by the sum of the follow-
ing: memories for safe printf code, safe printf fp code, and safe printf n
codes of the number of printf call patches in the function not using the frame
pointer register.

Kimchi: A Binary Rewriting Defense Against Format String Attacks 191

Fig. 15. The Kimchi’s binary rewriting of the program myecho in Fig. 1

Fig. 16. The detection of the format string attack to the program myecho in Fig. 1

int main(void) {
int i;
for (i = 0; i < 10000000; i++)

printf("%s %s %s\n", "a", "b", "c");
printf("%d\n", i);
exit(0);

}

Fig. 17. Micro-benchmark

6 Conclusion

We proposed a mechanism that protects binary programs that are vulnerable
to format string attacks by static binary translation. The proposed Kimchi can

192 J.H. You et al.

treat the binary programs not using the frame pointer register as well as the ones
statically linked to the standard C library; moreover, the patched program has a
very small amount of performance overhead. We are currently researching static
analysis of the range of printf call’s parameters and a format string defense
mechanism applicable to the vprintf family functions.

References

1. Twillman, T.: Exploit for proftpd 1.2.0pre6 (1999) http://www.securityfocus.com/
archive/1/28143/1999-09-16/1999-09-22/0.

2. The MITRE Corporation: CVE dictionary (2004) http://www.cve.mitre.org/
cgi-bin/cvekey.cgi?keyword=format+string.

3. tf8: Wu-Ftpd remote format string stack overwrite vulnerability (2000) http://
www.securityfocus.com/bid/1387.

4. Osborne, A., McDonald, J.: Isc bind 4 nslookupcomplain() format string vulnera-
bility (2001) http://www.securityfocus.com/bid/2309.

5. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier,
J.: FormatGuard: Automatic protection from printf format string vulnerabilities.
In: the 10th USENIX Security Symposium, Washington, DC (2001) 191–200

6. scut / team teso: Exploiting format string vulnerabilities (2001) http://www.cs.
ucsb.edu/˜jzhou/security/formats-teso.html.

7. Lhee, K.S., Chapin, S.J.: Buffer overflow and format string overflow vulnerabilities.
Software: Practice and Experience 33 (2003) 423–460

8. gera, riq: Advances in format string exploitation (2002) http://www.phrack.org/
phrack/59/p59-0x07.txt.

9. Core Security Team: Vulnerabilities in your code - format strings (2002) http://
www.core-sec.com/examples/core format strings.pdf.

10. Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vul-
nerabilities with type qualifiers. In: Procedings of the 10th USENIX Security
Symposium (SECURITY-01), Berkeley, CA, USENIX Association (2001) 201–220

11. Robbins, T.J.: libformat (2000) http://www.securityfocus.com/data/tools/
libformat-1.0pre5.tar.gz.

12. Singh, N., Tsai, T.: Libsafe 2.0: Detection of format string vulnerability exploits
(2001) http://www.research.avayalabs.com/project/libsafe/doc/whitepaper-20.ps.

13. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature gerneration of exploits on commodity software. In: Proceedings of
the 12th Annual Network and Distributed System Security Symposium (NDSS
’05). (2005)

14. Prasad, M., Chiueh, T.C.: A binary rewriting defense against stack-based buffer
overflow attacks. In: the Proceedings of USENIX 2003 Annual Technical Confer-
ence (2003) 211–224

15. Landi, W.: Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems 1 (1992) 323–337

16. Ramalingam, G.: The undecidability of aliasing. ACM Transactions on Program-
ming Languages and Systems 16 (1994) 1467–1471

17. Kildall, G.A.: A unified approach to global program optimization. In ACM Sym-
posium on Principles of Programming Languages (1973) 194–206

18. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers Principles, Techniques, and Tools.
Addison Wesley (1986)

Kimchi: A Binary Rewriting Defense Against Format String Attacks 193

19. Tool Interface Standard (TIS) Committee: Executable and linking format (ELF)
specification, version 1.2 (1995)

20. Emmerik, M.V.: Signatures for library functions in executable files. Technical
Report FIT-TR-1994-02 (1994)

21. Guilfanov, I., DataRescue: Fast library identification and recognition technology
(1997)

Software Protection Through Dynamic
Code Mutation

Matias Madou1, Bertrand Anckaert1, Patrick Moseley2, Saumya Debray2,
Bjorn De Sutter1, and Koen De Bosschere1

1 Department of Electronics and Information Systems,
Ghent University, B-9000 Ghent, Belgium

{mmadou, banckaer, brdsutte, kdb}@elis.UGent.be
2 Department of Computer Science,

University of Arizona, Tucson, AZ 85721, U.S.A.
{moseley, debray}@cs.arizona.edu

Abstract. Reverse engineering of executable programs, by disassem-
bling them and then using program analyses to recover high level se-
mantic information, plays an important role in attacks against software
systems, and can facilitate software piracy. This paper introduces a novel
technique to complicate reverse engineering. The idea is to change the
program code repeatedly as it executes, thereby thwarting correct disas-
sembly. The technique can be made as secure as the least secure compo-
nent of opaque variables and pseudorandom number generators.

1 Introduction

To reverse-engineer software systems, i.e., to obtain an (at least partial) un-
derstanding of the higher-level structure of an executable program, a malicious
attacker can subvert many recent advantages in program analysis technology and
software engineering tools. Thus, the existing technology can help an attacker
to discover software vulnerabilities, to make unauthorized modifications such as
bypassing password protection or identifying and deleting copyright notices or
watermarks within the program, or to steal intellectual property.

One way to address this problem is to maintain the software in encrypted
form and decrypt it is as needed during execution, using software decryption [1],
or specialized hardware [18]. Such approaches have the disadvantages of high
performance overhead or loss of flexibility, because software can no longer be
run on stock hardware.

To avoid these disadvantages, this paper instead focuses on an alternative
approach using code obfuscation techniques to enhance software security. The
goal is to deter attackers by making the cost of reverse engineering programs
prohibitively high.

The seminal paper on decompilation and reverse engineering [4] considers two
major difficulties in the process of reverse engineering programs. The first prob-
lem is that data and code are indistinguishable, as code on a Von Neumann

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 194–206, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Software Protection Through Dynamic Code Mutation 195

computer is nothing more than a specific type of (binary) data. The second
problem relates to self-modifying code, which does not follow the convention of
static code that there is a one-to-one mapping between instructions and memory
addresses.

In this paper, we propose a novel technique to automatically aggravate and/or
introduce these problems in existing programs. The basic idea is to mutate a pro-
gram as it executes, so that a region of memory is occupied by many different
code sequences during the course of execution. We show how this technique
undermines assumptions made by existing analyses for reverse engineering. Fur-
thermore, we claim that our technique can be made as secure as the least secure
component of opaque variables [5] and pseudorandom number generators [24].

The goal of this research is to deter “ordinary attackers” by making it sub-
stantially more difficult to reverse engineer the obfuscated code; it is consistent
with the prior work on code obfuscation, which aims primarily to raise the bar
against reverse engineering high enough so as to deter all but the most deter-
mined of attackers.

The remainder of this paper is structured as follows: Section 2 discusses related
work. Our technique is introduced in Section 3. The security of this technique
is the topic of Section 4. An evaluation of the impact on the size and execution
time of the program is discussed in Section 5. Finally, conclusions are drawn in
Section 6.

2 Related Work

The only other paper we are aware of that proposes dynamic code modifications
for obfuscation purposes is that of Kanzaki et al. [16], which describes a straight-
forward scheme for dynamically modifying executable code. The central idea is
to scramble a selected number of instructions in the program at obfuscation
time, and to restore the scrambled instructions into the original instructions at
run time. This restoration process is done through modifier instructions that are
put along every possible execution path leading to the scrambled instructions.
Once the restored instructions are executed, they are scrambled again. It is how-
ever not clear how the modifier instructions pose problems for a static analysis
targeted at restoring the original program.

There is a considerable body of work on code obfuscation that focuses on
making it harder for an attacker to decompile a program and extract high level
semantic information from it [6, 7, 21, 25]. Typically, these authors rely on the
use of computationally difficult static analysis problems, e.g., involving complex
Boolean expressions, pointers, or indirect control flow, to make it harder to
understand the statically disassembled program. Our work is complementary to
these proposals: we aim to make a program harder to disassemble correctly to
begin with, let alone recover high level information. If a program has already been
obfuscated using any of these higher level obfuscation techniques, our techniques
add an additional layer of protection that makes it even harder to decipher the
actual structure of the program.

196 M. Madou et al.

Researchers have looked into run-time code generation and modification,
including high-level languages and APIs for specifying dynamic code genera-
tion [3, 12, 13] and its application to run-time code specialization and optimiza-
tion [2, 17, 20]. Because that work focuses primarily on improving or extending a
program’s performance or functionality, rather than hindering reverse engineer-
ing, the developed transformations and techniques are considerably different
from those described in this paper.

A run-time code generation techniques that to some extent resembles the
technique proposed in this paper was proposed by Debray and Evans [11] for
applying profile-guided code compression. To reduce the memory footprint of
applications, infrequently executed code is stored in compressed format, and de-
compressed when it needs to be executed. At any point, only a small fraction of
the infrequently executed code is in decompressed form. Because of the large de-
compression overhead however, the frequently executed code is always available
in decompressed, i.e., the original, form. Hence this compression technique does
not hide the frequently executed portions of a program, which are generally also
likely to contain the code one might wish to protect.

3 Dynamic Software Mutation

This section discusses the introduction of dynamic software mutation into a
program. We consider two types of mutation: one-pass mutation, where a pro-
cedure is generated once just before its first execution, and cluster-based mu-
tations, where the same region of memory is shared by a cluster of “similar”
procedures, and where we will reconstruct procedures (and thus overwrite other
procedures) as required during the execution. We first discuss our novel ap-
proach to run-time code editing (Sec. 3.1). This will enable us to treat the
one-pass mutations (Sec. 3.2). Next, we look at how “similar” procedures are
selected (Sec. 3.3) and clustered (Sec. 3.4). Finally, we propose a protection
method for the edit scripts against attacks (Sec. 3.5) and discuss our technique’s
applicability (Sec. 3.6).

3.1 The Run-Time Edit Process

Our approach is built on top of two basic components: an editing engine and
edit scripts. When some procedure, say f , is to be generated at run-time, it
is statically replaced by a template: a copy of the procedure in which some in-
structions have been replaced by random, nonsensical, or deliberately misleading
instructions. All references to the procedure are replaced by references to a stub
that will invoke the editing engine, passing it the location of the edit script
and the entry point of the procedure. Based upon the information in the edit
script, the editing engine will reconstruct the required procedure and jump to its
entry point.

Edit Script. The edit script must contain all the necessary information to con-
vert the instructions in the template to the instructions of the original procedure.

Software Protection Through Dynamic Code Mutation 197

This information includes the location of the template and a specification of the
bytes that need to be changed and to what value. The format we used to encode
this information is the following:

editscript = address <editblock>1 <editblock>2 . . . <editblock>l $

editblock = m <edit>1 <edit>2 . . . <edit>m

edit = offset n byte1 byte2 . . . byten

An edit script starts with the address of the template, i.e., the code address
where the editing should start. It is followed by a variable sequence of edit blocks,
each of which specifies the number of edits it holds and the sequence thereof,
and is terminated by the stop symbol $. An edit specifies an offset, i.e., a number
of bytes that can be skipped without editing, followed by the number of bytes
that should be written and the bytes to write. As all the values in the edit
script, except the address, are bytes, this allows us to specify the modifications
compactly, while still maintaining enough generality to specify every possible
modification.

Editing Engine. The editing engine will be passed the address of the edit script
by the stub. It will save appropriate program state, such as the register contents,
interpret the edit script, flush the instruction cache if necessary, restore the saved
program state and finally branch to the entry point of the procedure, passed as
the second argument. Note that the necessity of flushing the instruction cache de-
pends on the architecture: on some architectures, such as the Intel IA-32 architec-
ture used for our current implementation, an explicit cache flush is not necessary.

Our approach to dynamic code editing modifies the template code in situ.
This is an important departure from classical sequence alignment and editing
algorithms [9], which scan a read-only source sequence, copying it over to a new
area of memory and applying modifications along the way where dictated by
the edit script. With in situ modifications this copying can be avoided, thereby
increasing performance. Insertion operations are however still expensive, as they
require moving the remainder of the source. Consequently, we do not support
insertion operations in our edit scripts. Instead only substitution operations are
supported. Deletion operations may be implemented by overwriting instructions
with no-op instructions, but as this introduces inefficiencies, we will avoid this
as much as possible.

3.2 One-Pass Mutations

We are now ready to discuss one-pass modifications. With this technique, we
scramble procedures separately, meaning that each procedure will have its own
template. Consequently, different procedures are not mapped to the same mem-
ory location. The idea at obfuscation time is to alter portions of a procedure
in the program. At run-time, these alterations are undone via a single round of
editing, just before the procedure is executed for the first time. To achieve this,
we place the stub at the entry point of the procedure. At the first invocation

198 M. Madou et al.

of the editing engine, this stub will be overwritten with the original code of the
procedure. This way, the call to the editor will be bypassed on subsequent calls
to the procedure.

3.3 Cluster-Based Mutations

The general idea behind clustering is to group procedures of which the instruction
sequences are sufficiently similar to enable the reconstruction of the code of each
of them from a single template without requiring too many edits. The procedures
in a cluster will then be mapped to the same memory area, the cluster template.
Each call to a clustered procedure is replaced by a stub that invokes the editing
engine with appropriate arguments to guide the edit process, as illustrated in
Figure 1.

To avoid reconstructing a procedure that is already present, the editing engine
will rewrite the stub of a constructed procedure in such a way that it branches
directly to that procedure instead of calling the editing engine. The stub of the
procedure that has been overwritten, will be updated to call the editing engine
the next time it needs to be executed.

Clustering. Clustering is performed through a node-merging algorithm on a
fully-connected undirected weighted graph in which each vertex is a cluster of
procedures and the weight of an edge (A, B) represents (an estimate of) the
additional run-time overhead (i.e., the cost of the edits) required when clusters
A and B are merged.

The number of run-time edits required by a cluster, i.e., the number of con-
trol flow transfers between two members of that cluster, is estimated based on
profiling information drawn from a set of training inputs.

As usual, the clustering process has to deal with a performance trade-off. On
the one hand, we would like every procedure to be in an as large as possible
cluster. The larger we make individual clusters –and therefore, the fewer clus-
ters we have overall– the greater the degree of obfuscation we will achieve, since
more different instructions will map to the same addresses, thus moving further
away from the conventional one-to-one mapping of instructions and memory
addresses.

Fig. 1. Run-time code mutation with clustered procedures

Software Protection Through Dynamic Code Mutation 199

On the other hand, the larger a cluster, the more differences there will likely be
between cluster members, resulting in a larger set of edit locations, and hence a
greater run-time overhead. Furthermore, this will result in an increasing number
of transitions between members within a cluster. With transition, we mean the
execution of one member of a cluster after the execution of another member.
Clearly, each transition requires editing the next procedure to be executed. Both
these factors increase the total run-time cost of the dynamic modification.

When our greedy clustering algorithm starts, each cluster consists of a single
procedure. The user needs to specify a run-time overhead “budget” (specified
as a fraction φ of the number of procedure calls n that can be preceded by a
call to the editing engine, i.e, budget=n × φ). As we want all procedures to
be in an as large as possible cluster, we proceed as follows. First we try to
create two-procedure clusters by only considering single-procedure clusters for
merging. The greedy selection heuristic chooses the edge with the lowest weight
and this weight is subtracted from the budget. We then recompute edge weights
by summing their respective weights to account for the merge. When no more
two-procedure clusters can be created, we try to create three-procedure clusters,
using the same heuristic, and so on.

Merging clusters is implemented as node coalescing. This sets an upper bound
to the actual cost and hence is conservative with regard to our budget. This is
repeated until no further merging is possible. A low value for the threshold φ
produces smaller clusters and less run-time overhead, while a high value results
in larger clusters and greater obfuscation at the cost of higher overhead. It is
important to note that two procedures that can be active together should not be
clustered. Otherwise, their common template would need to be converted into
two different procedures at the same time, which obviously is not possible.

These concepts are illustrated in Figure 2. The call graph is shown in Fig-
ure 2(a). It is transformed into a fully connected new graph, where the initial

Fig. 2. The creation of clusters, φ=0.1

200 M. Madou et al.

nodes are clusters consisting of exactly one procedure. The weight given to the
other edges between two clusters is the number of transitions between the re-
spective procedures in those clusters, i.e., the number of calls to the editor that
would result from merging these two procedures. These values are collected from
a set of training inputs. The resulting graph is shown in Figure 2(b). We further-
more assume that φ=0.1 and as the maximum number of procedure calls to the
editing engine n is 1000 (10+3*20+50+2*150+160+200+220), a budget of 100
calls is passed to the clustering algorithm. To avoid clustering procedures that
can be active at the same time, the edges between such procedures are assigned
the value infinity, as illustrated in Figure 2(c).

As our clustering algorithm starts with clusters consisting of a single proce-
dure, the algorithm looks for the edge with the smallest value, which is (f3, f5).
The weights of the edges of the merged cluster to the other clusters are up-
dated accordingly. Our graph now consists of three clusters consisting of single
procedure (f1, f2, and f4) and one cluster consisting of two procedures (Fig-
ure 2(d)). As it is still possible to make clusters of two procedures, the edge with
the smallest weight between the three clusters consisting of a single procedure
will be chosen (if its weight is smaller than our budget). This way, procedure
f2 and f4 are clustered (Figure 2(e)). As we can no longer make clusters of
two procedures, the algorithm now tries to make clusters of size three. This is
impossible, however, and so the algorithm terminates.

3.4 Minimizing the Edit Cost

In this section, we will discuss how the template for a cluster is generated. This
is done in such a way that the number of edits required to construct a procedure
in the cluster from the template is limited.

This is achieved through a layout algorithm which maximizes the overlap
between two procedures. First of all, basic blocks connected by fall-through edges
are merged into a single block, as they need to be placed consecutively in the
final program. In the example of Figure 3, fall-through edges are represented by
dashed lines. Therefore, basic blocks 1 and 2 are merged. This process is repeated
for all procedures in the cluster. In our example, there are three procedures in
the cluster and the procedures each have two blocks. These blocks are placed
such that the number of edits at run-time is minimized, as illustrated in Figure 3.
The cluster template consists of sequences of instructions that are common to all
the procedures and locations that are not constant for the cluster. The locations
that are not constant are indicated by the black bars labeled a, b, c, and d.
These locations will be edited by the editing engine.

3.5 Protecting Edit Scripts

With the code mutation scheme described thus far, it is possible, at least in
principle, for an attacker to statically analyze an edit script, together with the
code for the editor, to figure out the changes effected when the editor is invoked
with that edit script. To overcome this problem, we will use a pseudorandom

Software Protection Through Dynamic Code Mutation 201

Fig. 3

number generator seeded with an opaque variable [5]. A variable is opaque at
point p in a program, if it has a property at p which is known at obfuscation
time, but which is computationally difficult to determine analytically.

The basic idea is to combine the values statically present in the edit script
with a value generated by the pseudorandom number generator. As we know the
value of the seed (opaque variable) at obfuscation time, we can predict the values
that will be generated by the pseudorandom number generator. Therefore, it is
possible to write values in the edit script which will produce the needed values
when combined with the pseudorandom numbers. Every byte in the edit script is
then xor’ed with a byte created by the pseudorandom number generator before
it is passed to the editing engine.

3.6 Applicability

Dynamic code mutation relies fundamentally on statically constructing edit
scripts that can be used to carry out run-time code mutation. This presumes
that a program’s code is statically available for analysis and edit script con-
struction. Because of this, the technique is not applicable to code that is already
self-modifying. Dynamic code mutation also causes instruction opcodes and dis-
placements to change. New instructions are inserted in procedure stubs, and
displacements in branch and call instructions may change as a result of code
movement. This precludes the application of dynamic code mutation to pro-
grams that rely on the actual binary values of code locations (as opposed to
simply their instruction semantics), e.g., programs that compute a hash value of
their instructions for tamper-proofing.

Finally, the contents of the code locations change as dynamically mutating
code executes. This means that the technique cannot be applied to reentrant

202 M. Madou et al.

code such as shared libraries. Note that while this is an issue for multi-threaded
programs as well, we can deal with multi-threading using static concurrency
analyses to identify code regions that can be executed concurrently in multiple
threads [19], and use this information to modify clustering to ensure that code
regions that can execute concurrently in multiple threads are not placed in the
same cluster for mutation.

4 Security Evaluation

In this section we will discuss the security of our technique against attacks.

4.1 Broken Assumptions

While the omnipresent concept of the stored program computer allows for self-
modifying code, in practice, self-modifying code is largely limited to the realm of
viruses and the like. Because self-modifying code is rare nowadays, many analyses
and tools are based upon the assumption that the code does not change during
the execution.

Static disassemblers, e.g., examine the contents of the code sections of an
executable, decoding successive instructions one after another until no further
disassembly is possible [22]. Clearly these approaches fail if the instructions are
not present in the static image of the program.

Dynamic disassemblers by contrast, examine a program as it executes. Dy-
namic disassemblers are more accurate than static disassemblers for the code
that is actually executed. However, they do not give disassemblies for any code
that is not executed on the particular input(s) used.

In order to reduce the runtime overheads incurred, dynamic disassembly and
analysis tools commonly “cache” information about code regions that have al-
ready been processed. This reduces the runtime overhead of repeatedly disas-
sembling the same code. However, it assumes that the intervening code does not
change during execution.

Many other tools for program analysis and reverse engineering cannot deal
with dynamically mutating code either. For example, a large number of analyses,
such as constant propagation or liveness analysis require a conservative control
flow graph of the program. It is not yet fully understood how this control flow
graph can be constructed for dynamically mutating code without being overly
conservative. Through the use of self-modifying code, we cripple the attacker by
making his tools insufficient.

4.2 Inherent Security

While undermining assumptions made by existing analyses and tools adds a level
of protection to the program and will slow down reverse engineering, its security
is ad-hoc. However, no matter how good reverse engineering tools will become,
a certain level of security will remain. As long as the opaque variable or the
pseudorandom number generator are not broken, an attacker cannot deduce any

Software Protection Through Dynamic Code Mutation 203

other information than guessing from the edit script. Assuming that the opaque
variable and pseudorandom number generator are secure, it corresponds to a
one-time pad.

Depending on the class of expressions considered, the complexity of statically
determining whether an opaque variable always takes on a particular value can
range from NP-complete or co-NP-complete[8], through PSPACE-complete[23],
to EXPTIME-complete[14].

A lot of research has gone into the creation of secure pseudorandom number
generators. For our purposes, we need a fast pseudorandom number generator.
ISAAC [15] for example meets this requirement and, in practice, the results are
uniformly distributed, unbiased and unpredictable unless the seed is known.

5 Experimental Results

We built a prototype of our dynamic software mutation technique using Diablo, a
retargetable link-time binary rewriting framework[10]. We evaluated our system
using the 11 C benchmarks from the SPECint-2000 benchmark suite. All our
experiments were conducted on a 2.80GHz Pentium 4 system with 1 GiB of main
memory running RedHat Fedora Core 2. The programs were compiled with gcc
version 3.3.2 at optimization level -03 and obfuscated using profiles obtained
using the SPEC training inputs. The effects of obfuscation on performance were
evaluated using the (significantly different) SPEC reference inputs.

The prototype obfuscator is implemented on top of the tool Diablo, which
only handles statically linked programs. In real-life however, most programs
are dynamically linked. To mimic this in our experiments, and obtain realistic
results, our prototype obfuscator does not obfuscate library procedures.

Table 1. Number of procedures that can be protected

Table 1 shows the number of procedures that are scrambled by applying
our new obfuscation technique. The value of φ was set to 0.0005. Procedures
containing escaping edges1 can’t be made self-modifying in our prototype, as
it is impossible to make sure that the targeted procedure of the escaping edge
is present in memory. On all other procedures, we first applied the clustering
mutation. After this first pass, we scrambled the remaining procedures with the
1 Escaping edges are edges where control jumps from one procedure into another

without using the normal call/return mechanism for interprocedural control trans-
fers. They are rare in compiler generated code, and can most often be avoided by
disabling tail-call optimization.

204 M. Madou et al.

Fig. 4. Number of procedures per cluster

one-pass mutation. On average this combined application of the two mutation
technique is capable of protecting 92% of all (non-library) procedures in the
programs.

In Figure 4 the distribution of the number of procedures per cluster is shown.
The value of φ was set to 0.0005. On average, there are 3.61 procedures per
cluster.

Table 2. Relative execution time, φ=0.0005

Table 2 shows the run-time effects of our transformations. On average, our
benchmarks experience a slowdown of 17.7%; the effects on individual bench-
marks range between slight speedups (for gzip and vpr), to an almost 2x slow-
down (for vortex). This slight speedup experience is due to cache effects. In
general, frequently executed procedures, and especially frequently executed pro-
cedures that form hot call chains, will be put in separate clusters. Hence these
procedures will be mapped to different memory regions. If the combined size of
the templates of all clusters becomes smaller than the instruction cache size, the
result is that all hot call chains consist of procedures at different locations in
the cache. Hence few or none hot procedures will throw each other out of the
instruction cache. For gzip and vpr, the resulting gain in cache behavior more
than compensates for the, already small, overhead of executing the edit scripts.

Figure 5 summarizes the run-time overhead of our transformations for dif-
ferent φ’s. On average benchmarks are 31.1% slower with a φ=0.005 and 5.9%
slower with φ=0.00005.

Software Protection Through Dynamic Code Mutation 205

Fig. 5. Execution time slowdown for different values of φ

6 Conclusion

This paper introduces an approach to dynamic software protection, where the
code for the program changes repeatedly as it executes. As a result, a number
of assumptions made by existing tools and analyses for reverse engineering are
undermined. We have further argued that the technique is secure as long as the
opaque variables or random number generator have not been broken.

Acknowledgments

The authors would like to thank the Flemish Institute for the Promotion of
Scientific-Technological Research in the Industry (IWT), the Fund for Scientific
Research - Belgium - Flanders (FWO) and Ghent University for their financial
support. The work of Debray and Moseley was supported in part by NSF Grants
EIA-0080123, CCR-0113633, and CNS-0410918.

References

1. D. Aucsmith. Tamper resistant software: an implementation. Information Hiding,
Lecture Notes in Computer Science, 1174:317–333, 1996.

2. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic opti-
mization system. In Proc. SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 1–12, 2000.

3. B. Buck and J. Hollingsworth. An API for runtime code patching. The Interna-
tional Journal of High Performance Computing Applications, 14(4):317–329, 2000.

4. C. Cifuentes and K. J. Gough. Decompilation of binary programs. Software -
Practice & Experience, pages 811–829, July 1995.

5. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, pages 184–196, 1998.

6. C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection. In IEEE Transactions on Software Engineering,
volume 28, pages 735–746, Aug. 2002.

206 M. Madou et al.

7. C. S. Collberg, C. D. Thomborson, and D. Low. Breaking abstractions and un-
structuring data structures. In International Conference on Computer Languages,
pages 28–38, 1998.

8. S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM
Symposium on Theory of Computing, pages 151–158, 1971.

9. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
McGraw Hill, 1991.

10. B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere. Link-time
optimization of ARM binaries. In Proc. of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 211–220, 2004.

11. S. K. Debray and W. Evans. Profile-guided code compression. In Proc. ACM
SIGPLAN 2002 Conference on Programming Language Design and Implementation
(PLDI-02), pages 95–105, June 2002.

12. D. Engler, W. Hsieh, and F. Kaashoek. ‘c: A language for high-level, efficient,
and machine-independent dynamic code generation. In Symposium on Principles
of Programming Languages, pages 131–144, 1996.

13. M. Hicks, J. Moore, and S. Nettles. Dynamic software updating. In Proc. SIGPLAN
Conference on Programming Language Design and Implementation, pages 13–23,
2001.

14. P. Hudak and J. Young. Higher-order strictness analysis in the untyped lambda
calculus. In Proc. 13th ACM Symposium on Principles of Programming Languages,
pages 97–109, Jan. 1986.

15. R. Jenkins. Isaac. In Fast Software Encryption, pages 41–49, 1996.
16. Y. Kanzaki, A. Monden, M. Nakamura, and K. ichi Matsumoto. Exploiting self-

modification mechanism for program protection. In Proc. of the 27th Annual In-
ternational Computer Software and Applications Conference.

17. M. Leone and P. Lee. A Declarative Approach to Run-Time Code Generation. In
Workshop on Compiler Support for System Software (WCSSS), 1996.

18. D. Lie et al. Architectural support for copy and tamper resistant software. In Proc.
9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pages 168–177, 2000.

19. S. Masticola and B. Ryder. Non-concurrency analysis. In PPOPP ’93: Proceedings
of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 129–138. ACM Press, 1993.

20. F. Noel, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-
time specialization: Implementation and experimental study. In Proceedings of the
1998 International Conference on Computer Languages, pages 132–142, 1998.

21. T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical
basis and its implementation. In IEICE Transactions on Fundamentals, pages 176–
186, 2003.

22. B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revis-
ited. In WCRE ’02: Proceedings of the Ninth Working Conference on Reverse
Engineering (WCRE’02), pages 45–54. IEEE Computer Society, 2002.

23. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In
Proc. 5th ACM Symposium on Theory of Computing, pages 1–9, 1973.

24. J. Viega. Practical random number generation in software. In Proc. 19th Annual
Computer Security Applications Conference, pages 129–141, 2003.

25. C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-based sur-
vivability mechanisms. In International Conference of Dependable Systems and
Networks, Goteborg, Sweden, July 2001.

Efficient Hardware Implementation
of Elliptic Curve Cryptography over GF (pm)

Mun-Kyu Lee1, Keon Tae Kim2,�, Howon Kim3,
and Dong Kyue Kim2,��

1 School of Computer Science and Engineering,
Inha University, Incheon 402-751, Korea

mklee@inha.ac.kr
2 Department of Computer Engineering,

Pusan National University, Busan 609-735, Korea
{ktkim, dkkim}@islab.ce.pusan.ac.kr, dkkim1@pusan.ac.kr

3 Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

khw@etri.re.kr

Abstract. Elliptic curve cryptography (ECC) was discovered by
Koblitz and Miller, and there has been a vast amount of research on
its secure and efficient implementation. To implement ECC, three kinds
of finite fields are being widely used, i.e. prime field GF (p), binary field
GF (2m) and optimal extension field GF (pm). There is an extensive liter-
ature on hardware implementation of prime fields and binary fields, but
almost nothing is known about hardware implementation of OEFs. At a
first glance, this may seem natural because OEF has been devised orig-
inally for efficient software implementation of ECC. However, we still
need its hardware implementation for the environments where hetero-
geneous processors are communicating with each other using a single
cryptographic protocol. Since the ECC software implementation over
the weaker processor may not guarantee reasonable performance, a cus-
tomized ECC coprocessor would be a good solution.

In this paper, we propose an ECC coprocessor over GF (pm) on an
FPGA. Since the most resource-consuming operation is inversion, we fo-
cus on the efficient design of inversion modules. First we provide four
different implementations for inversion operation, i.e. three variants of
Extended Euclidian Algorithm and inversion using the iterative Frobe-
nius map. We use them as the building blocks of our ECC coprocessor
over OEF. According to our analysis, inversion using the iterative Frobe-
nius map shows the best performance among the four choices, from the
viewpoints of speed and area.

Keywords: Elliptic Curve Coprocessor, Finite Field, Optimal Extension
Field, FPGA.

� This work was supported by the Regional Research Centers Program (Research
Center for Logistics Information Technology), granted by the Korean Ministry of
Education & Human Resources Development.

�� Corresponding author.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 207–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

208 M.-K. Lee et al.

1 Introduction

Elliptic curve cryptography (ECC) was discovered by Koblitz [1] and Miller [2],
and there has been a vast amount of research on its secure and efficient im-
plementation. In elliptic curve systems, a desired security level can be attained
with significantly smaller keys than is possible with other public key systems
such as RSA.1 This means faster implementation as well as more efficient use of
power, bandwidth and storage. Hence ECC is attracting more and more attention
nowadays, especially in the area of mobile and embedded systems where resource-
constrained devices are used, and many standards organizations have recently
been adopting ECC in their public key cryptography standards [4, 5, 6, 7, 8].

To implement ECC, the underlying finite field should be supported properly.
Generally, three kinds of elliptic curves are used for ECC, i.e. prime field GF (p),
binary field GF (2m) and optimal extension field (OEF) GF (pm) [9, 10] .

While there is an extensive literature on hardware implementation of prime
fields and binary fields, almost nothing is known about hardware implementation
of OEFs. At a first glance, this may seem natural because OEF has originally
been devised for software optimization of ECC.2 But in fact, the hardware im-
plementation of OEF is necessary in the following sense: consider, for example,
an environment where a 32-bit general purpose CPU generates an ECDSA sig-
nature over GF (pm) with p ≈ 232 and a weaker CPU verifies the signature (and
vice versa). Since all the participants in the protocol should use the same param-
eters according to a given standard,3 the weaker CPU would suffer from its poor
performance, especially if its word size is smaller than 32 bits. The problem is
easily solved by installing a customized GF (pm) ECC coprocessor in the weaker
system, which is our motivation for the study of hardware implementation of
ECC over OEF.

In this paper, we propose an ECC coprocessor over GF (pm) with p = 231− 1
and m = 7 on an FPGA. The most important part of our work is the efficient de-
sign of the field inversion module, since inversion is much more time-consuming
than other finite field operations such as multiplication and addition. We provide
four different implementations for the inversion module, i.e. three variants of the
Extended Euclidian Algorithm (Algorithms IE, IP and IM [12]) and inversion
using the Frobenius map [10] which we call Algorithm IFM in this paper, as well
as other basic modules including an adder and a multiplier. These modules are
used to design an ECC coprocessor which is capable of EC point addition and
EC point doubling. According to our analysis, Algorithm IFM is more efficient

1 For example, it is generally accepted that a 160-bit elliptic curve key provides the
same level of security as a 1024-bit RSA key [3].

2 Actually, p in OEF GF (pm) is selected to fit into a word of the target CPU so that
built-in arithmetic operations of that CPU may be fully used. A precise comparison
of software implementations of ECC shows that OEFs are more efficient than prime
fields and binary fields under the same level of security [11].

3 Some recently established standards (e.g. [8]) have already included OEF as the
underlying field for ECC.

Efficient Hardware Implementation of ECC over GF (pm) 209

than the other alternatives: its throughput is 1.8 times higher than the best of
the other three methods, and moreover, it uses much less area. As a result, the
ECC coprocessor using Algorithm IFM as its inversion module shows the best
performance from the viewpoints of throughput and area.

2 Preliminaries

2.1 Optimal Extension Field

Finite fields are denoted by GF (pm), where p is a prime and m is a positive
integer. An OEF is a finite field GF (pm) that satisfies the following [9, 10]:

1. p = 2n − c, where log2 |c| ≤ n/2.
2. An irreducible binomial f(x) = xm − w (w ∈ GF (p)) exists.

An element A(x) in an OEF is represented as A(x) =
∑m−1

i=0 aix
i using the

polynomial basis representation, where ai ∈ GF (p).
All arithmetic operations in OEF are performed modulo f(x) [10]:

• Addition and subtraction of two field elements is implemented in a straight-
forward manner by adding or subtracting the coefficients of their polynomial
representation and, if necessary, performing a modular reduction by sub-
tracting or adding p once from the intermediate result. Note that the costs
for these operations are negligible compared to multiplication and inversion.

• Multiplication is done in two stages.
– In the first stage, we perform an ordinary polynomial multiplication of

two field elements A(x) and B(x), resulting in an intermediate product
C′(x) of degree less than or equal to 2m− 2, i.e., C′(x) =

∑2m−2
i=0 c′ix

i.
The schoolbook method to calculate the intermediate coefficients c′i, i =
0, 1, . . . , 2m − 2, requires m2 multiplications and (m − 1)2 additions in
the subfield GF (p). Note that squaring can be considered a special case
of multiplication. The only difference is that the number of coefficient
multiplications can be reduced to m(m + 1)/2.

– The second stage is the reduction stage where C′(x) mod f(x) is calcu-
lated to get C(x) = A(x) ·B(x) mod f(x). Because the field polynomial
f(x) = xm − w is a binomial, the reduction can be done as

C(x) = c′m−1x
m−1 + (wc′2m−2 + c′m−2 mod p) + · · ·+ (wc′m + c′0 mod p).

As an optimization, when possible we choose those fields with f(x) =
xm − 2, i.e., w = 2, in order to implement the multiplications as shifts.
OEFs that offer this optimization are known as Type II OEFs.

• The most interesting operation is inversion, which is to find B(x) ∈ GF (pm)
such that A(x) ·B(x) ≡ 1 mod f(x), when A(x) ∈ GF (pm) is given. We will
give a brief survey of this operation in the next section.

210 M.-K. Lee et al.

2.2 Inversion in Optimal Extension Fields

Since inversion is the most time-consuming part among the finite field operations,
it is very important to design this operation efficiently for the implementation of
ECC. Although the Extended Euclidean Algorithm (EEA) is a good choice for
inversion in every finite field, there are various algorithms optimized for specific
fields as follows:

• For prime field GF (p), the Binary EEA is known as the best choice [13]. In
this algorithm, divisions of the original EEA are replaced with shift opera-
tions and subtractions.

• For binary field GF (2m), the Almost Inverse Algorithm [14] and its modified
version [15] are used as well as the EEA.

• For OEF, we have four choices, i.e., three variants of the EEA [12] and in-
version using efficient powering [10, 16]. According to [12], Algorithm IM,
which is one of the variants of the EEA, shows the best performance in
software implementation of OEF. We assume that this observation cannot
be applied directly to the hardware implementation, and decide to imple-
ment all of the four possible choices. Hence most of our work in this paper
is dedicated to the implementation of inversion modules and also to the
task of investigating what is the best choice for hardware implementation
of OEF.

2.3 Elliptic Curve Operations

An elliptic curve over GF (pm) is given by

E : Y 2 = X3 + AX + B, (1)

where A, B ∈ GF (pm) and 4A3 + 27B2 �= 0. It is well known that E forms an
additive group under point addition operation. For cryptographic applications,
an elliptic curve is chosen so that its group order may be divisible by a sufficiently
large prime, i.e., order = hr for a large prime r and a small integer h [7, 8].

In (1), a point on an elliptic curve is represented in the form (X, Y), which is
called affine coordinates. There is also an alternative form, i.e., projective coor-
dinates (X, Y, Z). The motivation of using projective coordinates is that we can
change one inversion, which is contained in point addition or point doubling,
into several multiplications (and squarings). Therefore, if the ratio of (inversion
cost)/(multiplication cost), which we call the I/M ratio, is large, projective co-
ordinates would be a better choice. It is known that for binary fields GF (2m)
and prime fields GF (p), the I/M ratio is quite large, and ECC implementa-
tions using projective coordinates are much more efficient than those using affine
coordinates [13, 15].

For an OEF, we should be more careful with the choice of the coordinate
system, since the I/M ratio varies according to the change of p and m. The I/M
ratio at the break-even point between affine and projective representations lies
between 3.6 and 7.6 for various choices of p and m [12]. If the measured I/M

Efficient Hardware Implementation of ECC over GF (pm) 211

ratio for a specific GF (pm) is greater than the break-even point value for that
field, then the projective coordinates should be used. In our case, the I/M ratio
is about 3.4 (See Table 1.), which is below the break-even point. Moreover, the
number of required gates for projective coordinates are much larger than those
of affine coordinates. Hence we use affine coordinates in this paper.

When two points P = (X1, Y1) and Q = (X2, Y2) on the curve (1) are given,
we can define point operation P + Q = (X3, Y3) as

X3 = λ2 − (X1 + X2), Y3 = λ(X1 −X3)− Y1, (2)

where λ = (X2 −X1)−1(Y2 − Y1) if X1 �= X2 (point addition) and λ = (2Y1)−1

(3X2
1 + A) if X1 = X2 (point doubling).

3 Design of Hardware Inversion Modules

To implement an ECC coprocessor, we should support the underlying field op-
erations. Now we focus on the presentation of inversion modules, since the im-
plementation of other field operations such as an addition and a multiplication
is straightforward. In this section, we show four different implementations for
the inversion module, i.e. three variants of the Extended Euclidian Algorithm
(Algorithms IE, IP and IM [12]) and inversion using the Frobenius map [10]
which we call Algorithm IFM in this paper.

3.1 Variants of the Extended Euclidian Algorithm

Assuming that we are given A(x) ∈ GF (pm), we want to find B(x) ∈ GF (pm)
such that A(x) · B(x) ≡ 1 mod f(x). The inversion using the Extended Euclid-
ian Algorithm is to maintain the following relationships throughout its internal
processing [12]:

A(x)B(x) + U(x)f(x) = F (x), A(x)C(x) + V (x)f(x) = G(x).

Bearing this in mind, we begin with B(x) ← 0, U(x) ← 1, F (x) ← f(x), C(x) ←
1, V (x) ← 0 and G(x) ← A(x). Then we try to reduce the degrees of F (x) and
G(x) until one of them becomes 1, which means that A(x)B(x) ≡ 1 mod f(x)
or A(x)C(x) ≡ 1 mod f(x).

In [12], three methods are given to reduce the degrees of F (x) and G(x), which
are called Algorithm IE, Algorithm IP and Algorithm IM, respectively. We have
implemented each of these three algorithms, and have found out that Algorithm
IM gives the most efficient hardware implementation. Fig. 1 shows the block
diagram of the IM module. The control logic issues appropriate control signals
according to the IM algorithm, and there are several sub-modules for addition,
subtraction and multiplication. There are four registers to store the intermediate
results of B(x), C(x), F (x) and G(x), and also two additional registers to store
the degrees of F (x) and G(x). Note that we do not store U(x) and V (x) because
they are not required for our computation.

212 M.-K. Lee et al.

C Register

B Register

G Register

F Register

OEF
Subtraction

OEF

Multiplication

Addition

OEF

Mux

Mux

DeMux

Mux

Mux
32 * 224 bit OEF

Multiplication

32 * 224 bit OEF

Multiplication

Subtraction
32 bit

32 bit
Multiplication DeMux

DeMux

DeMux

Mux

Mux

Mux

Mux

Mux

Cotrol Logic

A (x)
−1

f(x)

A(x)

0

1

deg(G) Register

deg(F) Register

Fig. 1. Inversion module using Algorithm IM

3.2 Fast Inversion Algorithm Using the Frobenius Map (IFM)

In this section, we first show an interesting property of the Frobenius map
over OEFs, and then explain Bailey and Paar’s inversion algorithm using this
property.

Let A(x) =
∑m−1

j=0 ajx
j ∈ GF (pm). The Frobenius map is an automorphism

defined by A(x) → Ap(x). Then the i-th iterate of the Frobenius map A(x) →
Api

(x) is also an automorphism and it can be represented as a0 +
∑m−1

j=1 ajx
jpi

since ap
j = aj in GF (p). By xm ≡ w mod f(x), we get

xjpi ≡ x(jpi mod m)w
jpi/m� mod f(x)

for 1 ≤ j ≤ m− 1, and

Api

(x) = a0 +
∑m−1

j=1 ajw

jpi/m�x(jpi mod m). (3)

After reordering terms in the above equation, we can obtain a polynomial basis
representation of Api

(x). Note that we can pre-compute w
jpi/m�, since p, m,
and w are independent of A(x). Hence, (3) can be computed by only m−1 on-line
multiplications in GF (p). Note that the costs to reorder terms are negligible.4

4 In the original paper of Bailey and Paar [10], (3) is computed as Api

(x) = a0 +
m−1
j=1 ajw

�jpi/m�xj , i.e. without any reordering. As Baktir and Sunar [17] have
pointed out, however, this simplification is faulty.

Efficient Hardware Implementation of ECC over GF (pm) 213

Bailey and Paar’s inversion algorithm for OEFs [10] is based on the obser-
vation that Itoh and Tsujii’s inversion algorithm [16] over GF (2m) may be effi-
ciently used in the context of OEFs. Note that for any element A(x) ∈ GF (pm),
Ar(x) will be in GF (p), where r = (pm−1)/(p−1). The following is a high-level
description of Bailey and Paar’s inversion algorithm.

Algorithm. OEF inversion [10]
Input. A(x) ∈ GF (pm).
Output. B(x) ∈ GF (pm) s.t. A(x) ·B(x) ≡ 1 mod f(x).
Step 1. B(x) ← Ar−1(x).
Step 2. c0 ← B(x) ·A(x).
Step 3. c ← c−1

0 mod p.
Step 4. B(x) ← B(x) · c.

The core of the algorithm is the first step. Since the exponent r−1 = pm−1 +
pm−2 + · · ·+ p will be fixed for a given field, we know the p-adic representation
of r− 1 in advance, i.e., r− 1 = (11 . . . 10)p. Hence we can compute Ar−1 by an
addition chain for (11 . . . 10)p. In our coprocessor, where m = 7 is used, Ar−1

will be computed as follows:

B ← Ap = A(10); B0 ← BA = A(11);
B ← Bp2

0 = A(1100); B ← BB0 = A(1111);
B ← Bp2

= A(111100); B ← BB0 = A(111111);
B ← Bp = A(1111110).

Note that a p-th power and a p2-th power over GF (pm) can be computed effi-
ciently using (3). Therefore the only significant operation for Step 1 is several
multiplications over GF (pm).

Now we consider the other steps. Since c0 = Ar(x) is always an element in
GF (p), we use the Extended Euclidian Algorithm over GF (p) for Step 3. Steps 2
and 4 are one multiplication over GF (pm) and one multiplication by a constant
in GF (p), respectively.

3.3 Design of the IFM Module

In this section, we design the IFM module, i.e. a fast inversion module using the
iterative Frobenius maps. First, the parameters that we have used are as follows.

1. Finite field: OEF GF (pm) with p = 231 − 1, m = 7
2. Field polynomial: f(x) = x7 − 3
3. Basis: polynomial basis

Fig. 2 shows the block diagram of the IFM module. The control logic issues
appropriate control signals according to the inversion algorithm described in the
previous section. The register A stores the input data of the inversion module,
and register B stores the result. The register B0 and register C0 are used to
store the intermediate results. There are other arithmetic units for addition and

214 M.-K. Lee et al.

A Register

Mux

Mux

B Register

Mux Mux

Multiplication
32 but

DeMux

DeMux

Multiplication
OEF

Mux C0 Register

Mux

Table
Precomputed

Cotrol Logic

B0 Register

Mux

Mux

Algorithms
Extended Euclid

OEF
Addition / Subtraction

A(x)

A (x)
−1

Fig. 2. Fast inversion module using the Frobenius map (IFM module)

multiplication, a single-precision EEA module to compute c = c−1
0 mod p, and

a precomputed table to store twelve values of xjpi

= w
jpi/m�x(jpi mod m) for
i = 1, 2 and j = 1, . . . , 6 as follows:

xp mod f(x) ≡ 1752599774x xp2
mod f(x) ≡ 1600955193x

x2p mod f(x) ≡ 1600955193x2 x2p2
mod f(x) ≡ 894255406x2

x3p mod f(x) ≡ 1537170743x3 x3p2
mod f(x) ≡ 1205362885x3

x4p mod f(x) ≡ 894255406x4 x4p2
mod f(x) ≡ 1752599774x4

x5p mod f(x) ≡ 1599590586x5 x5p2
mod f(x) ≡ 1537170743x5

x6p mod f(x) ≡ 1205362885x6 x6p2
mod f(x) ≡ 1599590586x6

4 Design of ECC Coprocessor

In this section, we propose an ECC coprocessor over GF (pm) using the modules
given in the previous sections. We use the following elliptic curve parameters,
which are selected from curve ECP31M07K in [8].

1. Finite field: OEF GF (pm) with p = 231 − 1, m = 7 and binomial f(x) =
x7 − 3.

2. Elliptic curve: Y 2 = X3 + 2147483644X + 270 (We use affine coordinates.)
3. Base point: (xG, yG), where

xG = 0x 006C41AD F9756CDD 5A59E058 9F63D27F
0AA730D4 72AA5D63 8511A3A5,

yG = 0x 006527DB 66D7A794 F1424E42 1CF86FE1
75F96FDD 649F576F 172F5E4C

Efficient Hardware Implementation of ECC over GF (pm) 215

Addition

OEF

Mux

Mux

OEF
Subtraction

d Register

c Register

b Register

a Register

Inversion
OEF

Mux

Mux

OEF

Multiplication DeMux

e Register

f Register

g Register

Cotrol Logic

X1

Y1

X2

Y2

X3

Y3

A

Mux

Mux

D
eM

ux
D

eM
ux

M
ux

M
ux

M
ux

M
ux

Fig. 3. ECC Coprocessor over GF (pm)

Fig. 3 shows the block diagram of our ECC coprocessor, which uses the for-
mula defined as (2). The control logic is responsible for deciding which op-
eration to do, i.e. EC point addition or EC point doubling. The inputs are
given as X1, Y1, X2 and Y2 for point addition, and X1, Y1 and A for point
doubling. Then the result of the point operations are returned as X3 and Y3.
Registers a through g are used to store the intermediate results. The inver-
sion module can be implemented using one of the four algorithms given in Sec-
tions 3.1 and 3.3. Therefore we have four different implementations of the ECC
coprocessor.

5 Implementation Results and Performance Analysis

In this section, we investigate the performance of the implemented modules and
the resulting ECC coprocessor, which are modeled using VHDL and ModelSim
5.8, and then implemented with FPGA Xilinx Virtex-E XCV2000E-6-BG560.

Table 1 shows the performance of our modules for OEF operation. We can
see that the performance of inversion operation is critical for the efficient im-
plementation of the ECC coprocessor. We also see that among the four types
of inversion modules, the IFM module consumes the smallest number of gates.
While the maximum frequency of the IE module is slightly higher than that of
the IFM module, the throughput of the IFM module is significantly higher than
those of the others, i.e. the IFM module is about 1.8–11.3 times faster than the
other inversion modules.

216 M.-K. Lee et al.

Table 1. Performance of the modules for OEF operation

module # of gates # of slices frequency time
(MHz) (μsec)

OEF addition 19,091 3,199 138.026 0.09
OEF subtraction 20,393 3,416 138.026 0.09

OEF multiplication 58,153 9,019 39.307 8.19
OEF inversion (IE) 107,695 15,730 27.780 312.89
OEF inversion (IP) 125,386 17,925 23.708 201.95
OEF inversion (IM) 124,267 17,905 23.708 50.91
OEF inversion (IFM) 106,166 14,957 26.286 27.77

Table 2. Performance of the ECC coprocessor

type # of gates # of slices frequency operation time
(MHz) (μsec)

EC addition 268.97
Using IE 229,276 32,433 27.666 EC doubling 248.67

EC scalar mult. 160,183.97
EC addition 188.02

Using IP 236,276 34,722 24.492 EC doubling 163.76
EC scalar mult. 50,806.17
EC addition 70.77

Using IM 243,955 34,330 23.542 EC doubling 76.83
EC scalar mult. 18,338.08
EC addition 33.20

Using IFM 228,597 31,607 26.183 EC doubling 43.94
EC scalar mult. 11,294.85

Table 2 presents a summary of the characteristics of the four types of ECC
coprocessors implemented using these OEF modules. In a scalar multiplication
kP , we used k ≈ 2186. In this table, we first see that the coprocessor using the
IFM module takes the smallest area. We also see that the speed of EC scalar
multiplication of the coprocessor using the IFM module is faster than the other
types of coprocessors by 1.6–14.2 times.

6 Conclusions

We have proposed an ECC coprocessor over GF (pm) on an FPGA. Specifically,
we have implemented four different types of inversion modules for the coproces-
sor, i.e. three variants of Extended Euclidian Algorithm and inversion using the
Frobenius map. From our implementation results, we can get the following facts:

– Among the various OEF operations, inversion is the dominant one.
– The performance of ECC coprocessor over OEF is closely related to the

performance of an inversion module. The performance gain obtained by the

Efficient Hardware Implementation of ECC over GF (pm) 217

optimization of an inversion module is directly reflected in that of the co-
processor as almost the same ratio.

– For a hardware implementation of OEF, inversion using the Frobenius map
outperforms variants of the Extended Euclidian Algorithm.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology-
CRYPTO 85. Volume 218 of LNCS., Springer (1986) 417–428

3. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004)

4. ISO/IEC 14888-3: Information Technology–Security Techniques–Digital Signatures
with Appendix–Part 3: Certificate Based-Mechanisms. (1998)

5. ANSI X9.62: Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA). (1999)

6. National Institute of Standards and Technology: Digital Signature Standard, FIPS
Publication 186-2. (2000)

7. IEEE P1363-2000: IEEE Standard Specifications for Public-Key Cryptography.
(2000)

8. TTAS.KO-12.0015: Digital Signature Mechanism with Appendix– Part 3: Korean
Certificate-based Digital Signature Algorithm using Elliptic Curves. (2001)

9. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-key
algorithms. In: CRYPTO ’98. Volume 1462 of LNCS., Springer (1998) 472–485

10. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application
in elliptic curve cryptography. Journal of Cryptology 14 (2001) 153–176

11. Smart, N.P.: A comparison of different finite fields for elliptic curve cryptosystems.
Computers and Mathematics with Applications 42 (2001) 91–100

12. Lim, C., Hwang, H.: Fast implementation of elliptic curve arithmetic in GF (pn).
In: Public Key Cryptography-PKC 2000. Volume 1751 of LNCS., Springer (2000)
405–421

13. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the
NIST elliptic curves over prime fields. In: CT-RSA 2001. Volume 2020 of LNCS.,
Springer (2001) 250–265

14. Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange with
elliptic curve systems. In: Advances in Cryptology-CRYPTO 95. Volume 963 of
LNCS., Springer (1995) 43–56

15. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic
curve cryptography over binary fields. In: Cryptographic Hardware and Embedded
Systems (CHES 2000). Volume 1965 of LNCS., Springer (2000) 1–24

16. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Information and Computation 78 (1988) 171–177

17. Baktir, S., Sunar, B.: Optimal tower fields. IEEE Transactions on Computers 53
(2004) 1231–1243

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 218 – 231, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Developing and Implementing IHPM on IXP 425
Network Processor Platforms*

Bo-Chao Cheng1, Ching-Fu Huang1, Wei-Chi Chang1,
and Cheng-Shong Wu2

1 Institute of Communications Engineering,
National Chung Cheng University, Chia-yi, Taiwan

bcheng@ccu.edu.tw,
{hellojared, fatcat}@insa.comm.ccu.edu.tw

http://insa.comm.ccu.edu.tw
2 Department of Electrical Engineering,

National Chung Cheng University, Chia-yi, Taiwan
ieecsw@ccu.edu.tw

Abstract. This paper describes a technique for tracing attacks back toward the
attackers somewhere in the Internet. There are many solutions existing for IP
traceback problem, such as packet marking and algebraic approach. Many of
them are not efficient and work under some unreasonable assumptions. The
“Island Hopping Packet Marking (IHPM)” algorithm, truly incorporating the
combination of the best features of the edge/node sampling and the cut vertex,
is able to counter those disputed assumptions and provides great performance to
reconstruct attacking paths with fewer collected packets under multiple attacks.
The assessing of IHPM performance on IXP425 network processor shows the
practical feasibility in routers implementations. Such a technique can provide a
key answer required for advancing the state-of-the-art in DDoS mitigation and
defenses in a realistic environment.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks have increasingly become an annoying
unfriendly behavior in the current Internet. When suffering a DDoS attack, the victim
can almost do nothing but tolerate it. The best solution should be to find out the
attackers and stop the attack at the origin. But as for those tricky attackers, they
usually use spoofed IP as their source IP address so that it is difficult to find out
where they really are. Therefore, we need some countermeasures to know the actually
path the packets traveled to against the DDoS attacks.

The Internet protocol has a serious fault that the source host can fill itself in the IP
source host field at each outgoing IP datagram that is forwarded by intermediate
gateways by looking the destination address in the IP header. The gateways don’t
check the source address field to see if the datagram is really from this address.
Therefore, the source host can fill random, arbitrary IP address in the IP source field,
resulting IP spoofing. A large number of attackers exploited this IP spoofing
technique and many attack tools are available in the Internet.

* This work was sponsored by NSC grant 93-2219-E-194-006 and Intel Taiwan.

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 219

A1

V

R1

A2

R4

R6
R5

R2

R3

R7

Fig. 1. IP spoofed problem. An attack path is indicated by solid line while a dotted line is a path
that ended at a spoofed source.

As opposed to other types of attacks, attackers launch DDoS attacks, which
involving IP spoofing with changing the source IP address of a host, to exhaust the
remote host resources, such as bandwidth, socket spaces to limit legitimate users
accessing a machine or services. Using the source IP address inside the IP header to
trace back is not an intelligent behavior because the source IP address is spoofed.
Consider the scenario shown in Fig. 1. Attacker A1 starts the DoS attack to victim V,
declaring that he is with the source address of A2. According to topology showing,
packets traverse the path R1, R2, R3, and R4 to victim (indicated by solid line). While
victim is aware of low performance of services, he investigates the traffic and
recognizes that a large number traffic is coming from A2. Then, his failure in the
traceback problem results an erroneous path R4, R5, R6, and R7 sequentially (indicated
by dotted line) and cannot stop the noise traffic. Consequently, there should be a
mechanism against the IP spoofed to traceback to the right origin of the attacks.

Filtering at router may be a possible solution to validate source address. A router
drops an egress packet whose source address is from outside domain, and discards an
ingress packet whose source address is the same as inside domain. Unfortunately,
Internet is asymmetric routing network. Asymmetric route means that there is more
than one way to reach the destination (e.g., redundant connections to the network) [5].
That means if a path is blocked because of filtering, there would be another redundant
path to that destination. Further, packet filtering is not deployed everywhere. So far,
it’s still possible for hackers to send malicious packets with source address
manipulation.

The trace back problem involves constructing an attack graph G that contains the
attack path(s) and the associated attack source(s) for each victim [6]. IP protocol is
vulnerability and it cannot provide a solution to the traceback problem. Clearly, a
supplementary or complementary mechanism to provide traceback information to
identify the source of the attack rapidly is required.

In this paper, we propose Island Hopping Packet Marking algorithm, carry it out on
the network processor platform and assess its performance. The rest of this paper is
organized as follows: Section 2 overviews a number of well-known published packet
tracing techniques, their assumptions and the motive to propose this paper. Some

220 B.-C. Cheng et al.

prerequisites and theorems of IHPM are described in section 3. We provide the
feasibility study that documents the analysis of IHPM performance data on IXP425
network processor, and section 6 concludes this paper.

2 Background

Some previous works have been done in the IP Packet Traceback problem domain.
There are two kinds of famous models to provide the fundamental on a range of
different researches. They are ICMP traceback (iTrace) [11] and marking packets [2].
The basic idea behind iTrace as follows: while packets go through, routers can, with a
low probability, generate a Traceback message containing information about the
adjacent routers and sent along to the destination. Upon receiving enough Traceback
messages from various routers along the path, the victim of an attack can identify
traffic source and determine attack path. In probabilistic marking packet approaches,
three different solutions are provided: router stamping [3], algebraic approach [12]
and Network support for IP traceback [2].

Edge sampling [2], the pioneer in the IP Traceback problem domain, reserves three
fields in each packet for two addresses and the distance. Based on the edge sampling
algorithm, routers mark packets with a probability p. Two adjoining routers are
sampled as an edge and the distance represents the distance of the sampled edge from
the victim. Savage and colleagues described assumptions that constrain the design of
the marking algorithms. Many of these assumptions may be under dispute. We
address these argued assumptions following.

− The route within attacker and victim is general stable: This assumption assumes
that the route is general stable during attack and/or before/after attack. Actually,
the routing is not static and stable on real Internet. Even with the same source and
destination, the route changes dynamically. Their primitive design is only good
under the static routing environment.

− Attackers must send enough packets to reconstruct paths: While speaking to
DoS/DDoS attack, it stuffs the bandwidth with a huge number of packets. To
mitigate the effect of DoS/DDoS attack is the main purpose of why we doing such
an effort. It is not tolerable since the attack sends numerous packets to cause
bandwidth consumption or system resource starvation. The solution to mitigate the
influence on our network is to reduce the packets needed at the construction phase
and locate the source as soon as possible.

− Attackers may work together: Before launching a DDoS attack, the attackers first
compromise a lot number of machines as their zombies. Therefore, the source of a
DDoS attack may come from not only one zombie. The capacity of detecting
multiple sources is the basic requirement. Their archaic design can not detect
multi-attacks under DDoS scenarios.

This paper is motivated by these unrealistic assumptions. We regard that the time
needed to locate the source is as more significant than wasting time to draw a detail
path. For this reason, we propose Island Hopping Packet Marking (IHPM) algorithm
to improve the drawbacks of Savage’s work and provide an efficient way to mitigate
intrusion impacts.

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 221

3 Island Hopping Packet Marking Algorithms

Inspired by the idea that node and edge sampling techniques [2] might be a primitive
solution for intrusion source identification and IP traceback problem, we propose a
more efficient and flexible solution, Island Hopping Packet Marking (IHPM)
algorithm. This combination of the best features of the node/edge sampling with the
best characteristics of cut vertex sounds great in theory and dissolves in practice.

First, we introduce the key theorem that forms the fundamental of IHPM path
reconstruction procedure. If v is a vertex in G = (V, E), the graph obtained from G by
deleting vertex v as well as the edges incident to the vertex v is denoted by G – v. A
vertex v of a graph G = (V, E) is a cut-vertex of G if the graph G – v contains at least
two components. On the other words, G – v is not connected [1]. The removal of the
cut-vertex from the connected graph results in the separation of two sub-graphs. The
property of the cut-vertex can be adapted to the network IP traceback problem. A cut-
vertex router works like a bridge between two networks. For example, a cut-vertex
router can be a connector between ISP X and ISP Y. It implies that packets from a
network to another one should have to travel through the cut-vertex router. Just like
an entranceway to another domain, efforts must be made at the cut-vertex router to
ensure security. Let us denote a path between v0 and vk as P (v0, vk) = {(v0, v1), (v1,
v2),…, (vk-1, vk)} and a X-Path as XP (cv0, cvk) = {(cv0, cv1), (cv1, cv2),…, (cvk-1, cvk)}
where cv0, cv1, …, cvk-1, cvk are cut-vertex routers.

Theorem 1
Let G be a connected graph, there are two path P (va, vz) and P (vb, vy) both from
domain I to another domain J where va , vb ∈ domain I and vy , vz ∈ domain J, then
XP1 (va, vz) is identical to XP2 (vb, vy)[4].

We categorize routers into two classes: normal router and cut-vertex router. Normal
routers reside in either the same domain or a different domain (e.g., v, x, y and z in
Fig. 2.) and do the similar procedure what routers have done in edge sampling [2].
The cut-vertex routers (e.g., cv1, cv2 and cv3) should perform the edge sampling
procedure plus the node marking procedure. We will describe those procedures more
detail in following section. The reason that we name this algorithm toward
modernization an “island-hopping strategy” is because X-Path is hopping between the
cut-vertex routers.

Fig. 2. Island Hopping Packet Marking scheme. Node append algorithm is implemented at each
cut-vertex routers, while other routers enforce the edge sampling algorithm.

222 B.-C. Cheng et al.

3.1 The Description of Each Fields Required in IHPM

Let us denote tuple M = (start, end, distance, OriginCV, FirstCV, NextCV)
representing these fields of each packet marked at node . The definition of each field
is given below.

1. start: When router decides to mark the packet, it writes its IP address to this field.
The start field represents the head of an edge.

2. end: While the start field is not empty and the value of the distance is zero, router
writes its address into end field. This field represents the end of an edge.

3. distance: While a packet travels through, router increases this field by one. The
distance represents the distance from the sampled edge to the closest downstream
cut-vertex router.

4. OriginCV: This field is written by the original cut-vertex router while packet
travels through and it is non-volatile. It represents the original and closest
downstream cut-vertex router to the source of attack traffic.

5. FirstCV: It is also written by cut-vertex router, but it is volatile and can be re-
written by downstream cut-vertex router. The value of this field characterizes the
first downstream cut-vertex of the sampled edge.

6. NextCV: This field represents the next downstream cut-vertex router of the
FirstCV. It is also re-writable.

3.2 Normal Router Marking Algorithm

A modification of the marking procedure from the edge sampling algorithm [2] is
applied to each normal router that marks the packet with a probability p. When deciding
to mark the packet, the normal router resets all fields to zero except for OriginCV and
writes its address into the start field. Otherwise, if the normal router finds that the
distance field is equal to zero, then it writes its address into the end field. Finally, it
increases the distance by one until the packet arriving the closest downstream cut-vertex
router. The marking procedure of normal router is illustrated in Fig. 3.

There are two differences from edge sampling: (1). IHPM takes care OriginCV,
FirstCV, NextCV; (2). This modified edge sampling algorithm is executed only on the
routers, named normal routers, between two neighbor cut-vertex routers.

Fig. 3. Modified edge sampling algorithm executed by normal routers

Marking procedure at normal router R:
for each packet w
let x be a random number from [0..1)
if x < p then
place zero into all fields except for OriginCV
write R into w.start

else
if w.distance = 0 then
 write R into w.end
if w.FirstCV = 0

increment w.distance

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 223

3.3 Cut-Vertex Router Marking Algorithm

Cut-vertex router is deployed at the critical places of the Internet and acts like
gateway to transmit the traffic from one domain to anther domain. Three fields,
OriginCV, FirstCV and NextCV will be used by cut-vertex routers that write their
addresses into. We describe this algorithm in Fig. 4.

The cut-vertex routers perform a procedure as easy as you look. If a packet goes
through the first cut-vertex, the cut-vertex router stuff the OriginCV field with its
address and no one can re-write this field with its address anymore. Otherwise, if the
OriginCV has been written but the FirstCV is empty, then the cut-vertex router writes
its address into the FirstCV field. Finally, if the NextCV field is empty, the router
stuffs it with its address. This procedure is very similar to node appending but only
three node space used.

Fig. 4. The marking procedure executed by cut-vertex routers

3.4 Victim Path Reconstructing Algorithm

Under IHPM marking technique scheme, routers execute the specified marking
algorithms to append necessary information (such as its address, and the distance) to
routed packets. At the mean time, the victim will perform the path reconstructing
algorithm based on collecting those marked packets. The reconstructing path
procedure for IHPM consists two parts: skeleton path and fishbone path. Just like X-
raying, X-Path (denoted as XP) is able to show the skeleton path consists of a
sequence of traversal cut vertex routers. On the other hand, the fishbone path shows
the detailed path about traversal routers within a domain.

In the path reconstruction procedure (see Fig. 5., there are two basic functions:
findLeaf and findParent. The process of findLeaf is to find out a leaf packet that
contains a zero value at the NextCV field and return FirstCV value that resides in the
same packet. The findParent function searches the ancestor for the input node, i.e.,
returns the FirstCV value where its NextCV field has the same value as the input
parameter. The IHPM path reconstruction procedure begins by partitioning each
packet w into different group based on the different of OriginCV field. For each
partitioned groups, findLeaf is used to find out the leaf packet and the corresponding
FirstCV value associated with the leaf packet is pushed into stack and passed to

Marking procedure at cut-vertex router R:
for each packet w
performs our modified edge sampling
if w.OriginCV = 0 then
write R into w.OriginCV

if w.FirstCV = 0 then
write R into w.FirstCV
break

if w.NextCV = 0 then
write R into w.NextCV

break

224 B.-C. Cheng et al.

findParent function. The function findParent traces out the remainder cut-vertex hop-
by-hop until it can not find any cut-vertex left. The X-Path of an attack is obtained
from pushing out all elements in the stack. If more accurate and fine path is required
for each domain j (constrained by two cut vertices: Ci,j and Cj,k), the path
reconstruction algorithm in edge sampling [2] is applied.

Fig. 5. Path reconstructing algorithm

3.5 A Example of Marking Algorithms

The below example illustrates the details of the marking procedures for IHPM. A
scenario network topology is shown in Fig. 6; a packet is marked at router a, and
remarked again at router d. Each field value at different traversal nodes are shown in
the Table 1. For example, if node a decides to mark a packet, the tuple Ma of the
packet should be (a, 0, 0, 0, 0, 0) while it leaving node a; The Md = (d, 0, 0, I, 0, 0)
means that the packet is marked at node d.

Fig. 6. A scenario network topology consists of three cut-vertex routers, a lot of normal routers,
and two attack paths

Suppose there is another attack that takes through the Internet along the path 2 to
the same victim as in path 1, and node d will mark the packets of both attacks. The
victim will receive two marked packet tuples as follows: (d, e, 2, I, K, 0) and (d, e, 2,
J, K, 0). Utilizing the tuple of (start, end, distance) = (d, e, 2), the edge sampling
algorithm is not equipped with the ability to detect multiple attacks because all

Path reconstructing procedure at victim V:
for each packet w from attacker
w was grouped by its OriginCV field;
for each group {
x=findLeaf();
push x into stack;
while ((y=findparent(x)) !=null) {
push y into stack;
x=y;

}
extract X-path by pop all elements in stack;

};
For each domain {
obtain fishbone path;

};

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 225

packets come from different attacks are marked on an equal basis. IHPM can easily
detect multiple attacks by employing the OriginCV field (i.e., path 1 has OriginCV = I
and path 2 has OriginCV = J). Thus, IHPM offers a unique feature resolve multiple
attacks from different domains.

Table 1. The tuple’s evolvement of a packet. This table shows the tuple’s evolvement of a
packet while leaving a node.

Routers Fields
a b c I J d e K

Start a a a a a d d d
End 0 b b b b 0 e e

Distance 0 1 2 3 3 0 1 2
OriginCV 0 0 0 I I I I I
FirstCV 0 0 0 I I 0 0 K
NextCV 0 0 0 0 J 0 0 0

3.6 IP Options Brief

In Probabilistic Packet Marking algorithms, some storage space in each packet is
required for path information. However, there is no enough room in the IP header to
accumulate all path information. IP option may be the only solution to accumulate
these 24 bytes information. This section describes how the path information is stuffed
into IP options.

IHPM utilizes five fully IP addresses start, end, OriginCV, FirstCV, and NextCV
and 16 bits distance fields, that are too big to IP header accommodating the path
information even encoding is used. Further, utilizing encoding technique (e.g.,
exclusive-or operator) will pay penalty for router performance and more packets
needed to calculate the attack path. That is why we decide doing nothing to reduce the
required space in order to gain a faster convergence time. This tradeoff problem
makes it extremely challenging to consider the space requirements and the
convergence time.

Based on RFC791 [9], IHPM uses the IP option space to carry the information of
M = (start, end, distance, OriginCV, FirstCV, NextCV) as shown in Fig. 7. It starts
with the “type” octet containing three fields: one bit for copy flag, two bits for option
class and five bits for option number. The IHPM “type” octet is (110110012) which
includes copied bit enabled, debugging and measurement class, and the option
number is defined as 25 (110012).

− The copy bit is asserted for fragmentation and avoidance of security vulnerability.
− The class bits are set to 2 (102) for debugging and measurement purpose.
− The number field is filled with 25 (110012) which is an undefined number space in

RFC 791 [9] to represent the Island Hopping Packet Marking.

The second byte of option is the length octet that is used to indicate the entire
length of the packet option. The length field is set to 0x18 implying that IP option

226 B.-C. Cheng et al.

+--------+--------+----------------+
| type | length | distance |
+--------+--------+----------------+
| start |
+----------------------------------+
| end |
+----------------------------------+
| OriginCV |
+----------------------------------+
| FirstCV |
+----------------------------------+
| NextCV |
+----------------------------------+

Fig. 7. IP option format for IHPM algorithms

totally has 24 bytes. The following bytes include the actual data of option. There two
octets to present the distance field followed by five fully IP addresses. The End-of-
Option-List packet option could be superfluous if the end of the option list is aligned
at a 32-bit boundary [7].

4 The Advantages of IHPM Algorithm

This section evaluates the IHPM algorithms. The analysis can be done by going
through three items: convergence time analysis, multiple attacks, single packet
defense and DDoS mitigation, and the X-Path reuse.

4.1 Convergence Time Analysis

Probability problem plays an important role in packet marking approach for traceback
problem. Routers mark received packet depending on the pre-defined probability
value p. Victim constructs the path according to the information embedded in the IP
header of each packet. How many packets should be received by victim to construct
the path? If each router has an identical probability value p, the probability of
receiving a marked packet from a router N hops away from the victim is

p (1 – p) N-1 (1)

So that, victim can nearly not get a marked packet from a router N hops away
while N is greater than fifteen and the marking probability is 0.3. In IHPM algorithm,
a few number of cut-vertex routers are deployed in the network. According to coupon
collector problem [12], its smaller quantity will reduce the convergence time. That is,
we can construct the skeleton path which is made up of a sequence of traversal cut
vertex routers with a few numbers of packets.

4.2 Multiple Attacks, Single Packet Defense and DDoS Mitigation

We demonstrated the capability of IHPM to capture multi-attack from different
domains in section 3.5. OriginCV field helps victim grouping different attacks
because each attacking domain has its own signature in OriginCV field.

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 227

The fault diagnosis problem in circuit systems can be taken as a model in order to
stop or isolate the DDoS/DoS traffic. Kim stated that some components can be
equipped with alarms for the fault detection or the faulty components identifications
[6]. We consider that the cut-vertex routers should be a good choice to deploy IDS or
ACL control mechanism. Upon receiving a single packet from the attacking domain,
the victim is able to finds out the cut-vertex router closest to attacking source based
on OriginCV field. This provides a quick way to mitigate DDoS attacks and contains
damages in the hacker’s domain.

4.3 The X-Path Reuse

Consider a scenario that one attack occurring travels along almost the same route with
another attack happened before. Do we need to waste time to construct the path
again? By theorem 1 in section 3, it states that two paths have an identical X-Path if
they are from and to the same domain. Therefore, we can reuse the X-Path if we have
already constructed an X-Path that has a same OriginCV value with the occurring
attacks.

5 Implement and Experiment Results

Every network system is unique and has special capabilities. With a programmable
advantage over ASIC-based solutions and providing mW/MIPS performance and
wide line speeds over software-based solutions, network processor becomes a cost-
effective core technology to implement network systems. As you think about network
systems design and implementation, it is important to plan how to make the dream
come true. Network processor delivers all the flavors with programmability,
flexibility and performability as well as with the added benefits of low cost such that
it helps network engineers intelligently and efficiently designing and implementing
their network systems. To match up the trend of industry development and eliminate
the practice gap between academic and industry, we choose ADI's Coyote Gateway
Reference Design board, based on Intel IXP425 network processor [8], as our
implementation platform. This section describes the implementation of marking
algorithms of IHPM on the IXP 425 network processor reference platform and
presents the experiment results.

5.1 IXP 425 Network Processor Description

Intel IXP 425 network processor is chosen to be the platform of IHPM packet
marking algorithms because of its high-performance and fully programmable
architecture. Intel network processor provides an ease-of-use and flexibility solution
to accelerate time-to-market. Its wire-speed packet processing power originates from
the combination of a high performance Intel XScale core with additional Network
Processor Engines (NPEs). It also combines integration with support for multiple
WAN and LAN technologies in a common architecture designed providing wired-
speed performance. Two 10/100 Ethernet MACs are included in its feature set that
can used to simulate the interfaces of a route.

228 B.-C. Cheng et al.

Intel IXP400 Software, coming with the IXP42X production line processors, is
used to enable the processor’s hardware in a way which gives the maximum
flexibility. IXP Software is composed of four main components [10]: NPE microcode,
Acccess Layer, Codelets, and Operating System Abstraction Layer (OSAL). We
explain each of them briefly:

− The NPE microcode contains a lot of loadable and executable NPE instruction files
that implement the NPE functionality. The NPEs are RISC co-processors
embedded in the main processor providing specific hardware services such as
Ethernet processing and MAC interfaces.

− The Access Layer is an entry which allows customized code accessing the
underlying abilities of the IXP42X. This layer is made up of a set of software
access-layer components while clients can use it to configure, control and
communicate with the hardware.

− The Operating System Abstraction Layer (OSAL) is defined as a portable interface
between operating system services and the access-layer components and the codelets.

− The Codelets are example applications that demonstrate how to use functions
provided by the Intel XScale core library and the underlying hardware. Codelets
are sorted by hardware port type and typically exercise some Layer-2 functionality
on that port. To short the develop period, the IHPM marking algorithms are
implemented based on the ethAcc codelets.

5.2 Testbed Environment and Experiment Results

The testbed environment includes a target board, SmartBits 2000 device, and
SmartWindow 8.50.120. The target board is Coyote Gateway Reference Design from
ADI and runs with MontaVista Linux Professional Edition version 3.1. The codelets
(Intel IXP400 software v1.5 releases) provide us a good starting point to implement
two marking algorithms, normal router marking algorithm and cut-vertex router
marking algorithm. In order to assess and measure the algorithms performance, we
establish a performance baseline: a regular route receives, looks for routing table and
forwards packets without any packet marking procedures. The normal router marking
algorithm and cut-vertex router marking algorithm associated with the baseline router
behavior are implemented respectively, i.e., both targets have the tasks of receiving
packets, probabilistic packet marking packets, looking for routing table and eventually
routing packets. Let RR represent the regular router implementation, NR stand for the
normal router marking implementation and CVR denote cut-vertex router marking
implementation. Suppose that there are five routing table entries which are needed to
look up in our performance testing. To get the worst case of performance scenarios, the
marking probability value is set to 1. Finally, we collect performance data from the
testbed environment to analyze how IHPM marking algorithm performance varies from
the baseline in terms of the throughput and latency.

Fig. 8 shows how throughput depends on the different frame size. This picture
gives us an impression that the difference in throughput between normal router and
cut-vertex router almost tends to zero. Table 2 shows that all routers have wire-speed
throughput while the frame size is greater than 900 bytes.

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 229

0

20

40

60

80

100

120

64 300 500 700 900 1100 1300 1490

Frame size(byte)

RR
NR
CVR

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Fig. 8. The throughput of three different routers

50

100

150

200

300

350

64 300 500 700 900 1100 1300 1490

Frame

L
at

en
cy

(u
se

c)

RR
NR
CVR

Fig. 9. Latency analysis via difference frame size

230 B.-C. Cheng et al.

Table 2. The value representation of throughput

Frame size
Router

64 300 500 700 900 1100 1300 1490

Regular Router 13 46.02 74.01 97.51 99.01 99.5 100 100

Normal Router 9 33.01 58 74.03 95 97.5 98 98.03

Cut-Vertex Router 9 33.01 53.01 74.01 94.05 97.02 98 98.03

Fig. 9 shows how latency time depends on the difference frame size. The latency of
both two marking procedures is almost identical. And it also tells us that difference in
latency between two marking router and regular router is almost 30-40 microsecond.
That means that the execution time of IHPM marking algorithm is only 30-40
microsecond on Xscale processor.

6 Conclusion

The challenge of intrusion source identification is a well-known network security
problem domain -- it involves packet marking, packet collection and correlation
algorithms to the network, and enables the victim to reconstruct the attack path and
pinpoint the source of the attack. We propose Island Hopping Packet Marking
(IHPM), based on the best characteristics from packet marking and cut vertex, to track
down the attacking source. Many of the credible and significant contributions
underlying the theorems and properties of IHPM have been proved to be effective in:
reducing the number of packets to construct skeleton paths; resisting to multiple
attacks simultaneously; relaxing unrealistic assumptions; reusing the skeleton path.

Network Processor is a nature and cost-effective solution to implement network
systems in term of performability and flexibility. As a core of network appliance
systems, network processor provides programmable advantages over ASIC-based
solutions and offers mW/MIPS performance and wide line speeds over software-
based solutions. Intel IXP425 network processor evaluation board (ADI's Coyote) is
chosen as IHPM implementation platform. The analysis of performance criteria (such
as latency and throughput) shows that IHPM is feasible and desirable for practical
router implementations.

This study has confirmed that IHPM meets the requirements to mitigate the
growing threat of DDoS attacks and provide a practical solution to locate the source
of intrusion.

 Developing and Implementing IHPM on IXP 425 Network Processor Platforms 231

References

1. K. Thulasiraman, M. N. S. Swamy: Graphs: Theory and algorithms. Wiley-Interscience,
1992

2. S. Savage, D. Wetherall, A. Karlin and T. Anderson: Network Support for IP Traceback.
In: ACM/IEEE Transactions on Networking, 9(3), June 2001.

3. Thomas W. Doeppner, Philip N. Klein and Andrew Koyfman: Using Router Stamping to
Identify the Source of IP Packets. In: Proc. of 7th ACM Conference on Computer and
Communications Security, Nov. 2000.

4. Bo-Chao Cheng, Ching-Fu Huang and Er-Kai Tsao: IHPM: A Fast Pathfinder and
Intrusion Source Identifier for DDoS Attacks, submitted to European Symposium on
Research in Computer Security (ESORICS 2005)

5. Rik Farrow: Spoofing source addresses, http://www.spirit.com/Network/net0300.html
6. Jonghyun Kim, Sridhar Radhakrishnan, Sudarshan K. Dhall: On Intrusion Source

Identification. In: 2nd IASTED International Conference on Communications, Internet and
Information Technology, November 17-19, 2003

7. Klaus Wehrle, Frank Pählke, Hartmut Ritter, Daniel Müller, Marc Bechler: The Linux®
Networking Architecture: Design and Implementation of Network Protocols in the Linux
Kernel. First edition. Prentice Hall, Upper Saddle River, New Jersey (2004)

8. Intel IXP 425 Network Processor, http://developer.intel.com/design/network/products/
npfamily/ixp425.htm

9. RFC 791 Internet Protocol, http://www.ietf.org/rfc/rfc0791.txt
10. Intel® IXP400 Software Programmer's Guide 1.5 edn, ftp://download.intel.com/design/

network/manuals/252539_v1_5.pdf
11. Steven M. Bellovin: ICMP Traceback Messages, Internet Draft: draft-bellovin-itrace-

00.txt, submitted Mar. 2000, expiration date Sep. 2000,http://www.research.att.com/
~smb/papers/draft-bellovin-itrace-00.txt

12. Drew Dean, Matt Franklin and Adam Stubblefield: An Algebraic Approach to IP
Traceback. In proceedings of NDSS'01, February 2001.

13. Kai Lai Chung: Elementary Probability Theory with Stochastic Processes, third edition.
Springer-Verlag New York Inc., 1979, chap. 6, pp. 159.

Analysis on the Clockwise Transposition
Routing for Dedicated Factoring Devices�

Tetsuya Izu1, Noboru Kunihiro2, Kazuo Ohta2, and Takeshi Shimoyama1

1 Fujitsu Limited, 4-1-1, Kamikodanaka, Nakahara-ku,
Kawasaki 211-8588, Japan

{izu, shimo-shimo}@jp.fujitsu.com
2 The University of Electro-Communications,

1-5-1, Chofugaoka, Chofu 182-8585, Japan
{kunihiro, ota}@ice.uec.ac.jp

Abstract. Recently, dedicated factoring devices have attracted much
attention since they might be a threat for a current RSA-based cryp-
tosystems. In some devices, the clockwise transposition routing is used
as a key technique, however, because of the lack of theoretic proof of
the termination, some additional circuits are required. In this paper,
we analyze the packet exchanging rule for the clockwise transposition
and propose some possible alternatives with keeping the “farthest-first”
property. Although we have no theoretic proof of the termination, exper-
imental results show practical availability in the clockwise transposition.
We also propose an improvement on the routing algorithm for the rela-
tion finding step in the number field sieve method of factorization, which
establishes two times speed-up.

Keywords: Integer factoring, clockwise transposition, routing.

1 Introduction

The integer factoring problem is one of the most fundamental topics in the area of
cryptology since the hardness of this problem assures the security of some public-
key cryptosystems such as the famous RSA. The number field sieve method
(NFS) [LLP+90] is the best algorithm for this problem. In fact, a 663-bit integer
was factored by NFS recently, which is a current record of the factorization
[RSA200]. NFS has 4 major steps, the polynomial selection step, the Relation
Finding (RF) step or the sieving step, the Linear Algebra (LA) step, and the
final step. Among them, RF and LA steps are theoretically and experimentally
dominant steps. Because of these steps, factoring 1024-bit integers is considered
infeasible in next 10 years (by similar approaches).

In order to overcome the difficulty, ASIC-based dedicated factoring devices
have been studied actively. In 2001, Bernstein employed a sorting algorithm

� A part of this work is financially supported by a consignment research from the
National Institute of Information and Communications Technology (NICT), Japan.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 232–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis on the Clockwise Transposition Routing 233

for LA step with standard ASIC architectures [Ber01]. Then Lenstra-Shamir-
Tomlinson-Tromer enhanced the device by using a routing algorithm [LST+02].
Furthermore, the design is substantially improved by Geiselmann-Steinwandt
[GS03b]. On the other hand, Geiselmann-Steinwandt applied these algorithms
to RF step, and proposed two designs DSH [GS03a] and YASD [GS04]. Shamir-
Tromer improved an optical sieving device TWINKLE [Sha99] into a novel ASIC-
based device TWIRL [ST03]. Both YASD and TWIRL handle RF step corre-
sponding to 768-bit integers, properties are quite different: the speed of TWIRL
is about 6.3 times faster than YASD, but required circuit area of YASD is smaller
than that of TWIRL. Recently, Franke-Kleinjung-Parr-Pelzl-Priplata-Stahlke
proposed a challenging device SHARK for RF step based on the lattice sieving
[FKP+05]. From these contributions, it is expected that the linear algebra step is
easily proceeded compared to the relation finding step in factoring large integers.

A purpose of this paper is to analyze the routing algorithm used in some de-
vices [LST+02, GS04], since Geiselmann-Köpfer-Steinwandt-Tromer constructed
a “livelock” example in which the routing algorithm falls into an infinite loop
[GKS+05]. We show possible alternatives for packet exchanging rules in the rout-
ing. Although we have no theoretic proof of the termination, experimental results
show the availability of these alternatives. Especially, some of our proposed al-
ternatives terminate for the livelock examples. We also propose an improvement
on the routing algorithm for RF step, namely YASD [GS04], to use a sub-torus
structure, which possibly establishes two times speed-up.

This paper is organized as follows: in section 2, we briefly introduce the clock-
wise transposition routing, and analyze the packet exchanging rules in section 3.
Section 4 shows our experimental results. We also propose an improvement on
YASD in section 5.

2 Preliminaries

In some factoring devices for both the relation finding step and the linear algebra
step in NFS, the clockwise transposition routing algorithm on a mesh is used
as a key technique. This section briefly introduces the clockwise transposition
routing [LST+02, GKS+05].

2.1 Clockwise Transposition Routing

A mesh is a set of m×m processors (called nodes) in a two-dimensional network.
Each node is connected to its upper, right, lower, and left nodes (if exist) and is
able to hold a packet, a pairwise data of a value and a target node (to be routed)
or Nil, and exchanges packets to its one of the neighbors. When a packet is
reached its target node, the data value is took into the node and the packet is
updated to Nil. For a given mesh filled with packets, a purpose of the routing
is to deliver all packets to their target nodes. Since we are interested in the
behavior of packets, we omit describing data values in the packets. Moreover,
for simplicity, we identify a node in the i-th row and the j-th column as (i, j) (0 ≤
i, j < m).

234 T. Izu et al.

Table 1. Clockwise transposition routing

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � � ⇒

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

⇑ ⇓
� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

⇐

� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �� � � � � � � �
� � � � � � � �

� � � � � � � �

The clockwise transposition [LST+02] routes packets in a mesh. The algo-
rithm is proceeded by a repetition of the following 4 steps until all packets are
delivered to their target nodes (also see Table 1), where t denotes the time:

t ≡ 0 (mod 4) For every column j and odd row i, a node (i, j) compares and
exchanges packets to its upper node (i− 1, j) (if exist).

t ≡ 1 (mod 4) For every row i and odd column j, a node (i, j) compares and
exchanges packets to its right node (i, j + 1) (if exist).

t ≡ 2 (mod 4) For every column j and odd row i, a node (i, j) compares and
exchanges packets to its lower node (i + 1, j) (if exist).

t ≡ 3 (mod 4) For every row i and odd column j, a node (i, j) compares and
exchanges packets to its left node (i, j − 1) (if exist).

Compared directions changes in a “clockwise” manner for nodes in odd rows
and odd columns. Here, the packet exchanging is ruled by the “farthest-first
exchange” [LST+02]. Details of the rules are discussed in the following sections.

It is claimed that the algorithm terminates in 2m steps with high proba-
bility [LST+02]. However, there is no theoretic proof whether the clockwise

Analysis on the Clockwise Transposition Routing 235

transposition terminates in finite steps or not. In fact, Geiselmann et al. con-
structed a concrete “livelock” example in which the algorithm falls into an in-
finite loop with a period 4m [GKS+05]. However, such exceptional cases are
very rare in factoring so that we can expect the termination of the algorithm in
practice.

2.2 Torus

In [GS04], Geiselmann-Steinwandt added a torus structure into the mesh for RF
step: the leftmost nodes are connected to the rightmost nodes and the upper-
most nodes are connected to the lowermost nodes. In this structure, since the
maximum distance from a node to its target becomes half, the clockwise trans-
position only requires reduced steps. This structure is also applicable to LA step
[GKS+05]. In the followings, a mesh with this torus structure is described as a
torus. Strongly note that the wiring problem for realizing the torus structure is
not serious in practice [GS04, GKS+05].

3 Packet Exchange

This section analyzes packet exchanging rules for the clockwise transposition
routing. The rule is very naive in terms of that the termination of the algorithm
depends on many factors including the exchanging rule and initial data of pack-
ets. In addition, the beginning step also has an effect on the termination. We
denote a target node of a node (i, j) as p(i, j) in the followings.

3.1 Farthest-First Rule

The packet exchanging rule for the clockwise transposition routing is described
as follows [GKS+05]: suppose we are comparing two nodes (i, j) and (i, j + 1)
horizontally. We exchange packets when

– p(i, j) = Nil and j + 1 > j1
– p(i, j + 1) = Nil and j0 > j
– p(i, j), p(i, j + 1) �= Nil and j0 ≥ j1

where p(i, j) = (i0, j0), p(i, j + 1) = (i1, j1) if they are not Nil. The 3rd rule
is described as the “farthest-first along the direction” rule [GKS+05]. For ver-
tical cases, the similar rule is easily established. Note that in the original rule
[LST+02], the 3rd condition was given as “j0 > j1”. However, this condition
does not work well for the livelock and the pathology examples described in the
next section.

3.2 Livelock and Pathology Examples

Geiselmann et al. constructed a livelock in which the routing algorithm fails into
an finite loop with a period 4m, and a pathology for which the routing algorithm
requires more than 2m steps on an m ×m mesh [GKS+05]. The livelock and

236 T. Izu et al.

Table 2. The livelock and the pathology example [GKS+05]

Livelock (m = 4)
0 1 2 3

0 (3,0) (2,0) (1,0) (0,0)
1 (3,1) (2,1) (1,1) (0,1)
2 (3,2) (2,2) (1,2) (0,2)
3 (3,3) (2,3) (1,3) (0,3)

Pathology (m = 4)
0 1 2 3

0 (0,0) (1,0) (2,0) (3,0)
1 (0,1) (1,1) (2,1) (3,1)
2 (0,2) (1,2) (2,2) (3,2)
3 (0,3) (1,3) (2,3) (3,3)

the pathology for m = 4 are in Table 2. In fact, the routing actually falls into a
4m-step loop for the livelock.

As we have mentioned, the clockwise transposition is naive: for the livelock
example, the algorithm terminates if we change the first step from ‘upper’ pro-
cedure to other procedures.

Treatments for such livelock cases differs in RF step and LA step. In RF step,
packets in an infinite loop can be omitted since the step does not require all
packets [GS04]. However, on the other hand, in LA step, any omission is not
permitted. Thus Geiselmann et al. proposed additional circuits to treat such
cases [GKS+05].

3.3 Exchanging Rule in Torus

In order to apply the clockwise transposition in the torus, the exchanging rule
should be modified. Geiselmann et al. proposed the following algorithm
[GKS+05]: before the routing, search the shortest paths of all packets to their
target nodes. If the path crosses the borders (i.e. wires between the leftmost
and the rightmost nodes, or the uppermost and the lowermost nodes) add (sub-
tract) m to (from) corresponding addresses of target nodes. Then apply the
same exchanging rule as before. However, this modification does not solve the
termination problem either theoretically nor experimentally. Thus we would like
to explore other possible rules with keeping the “farthest-first” property.

3.4 Rephrasing Exchanging Rule

In order to use the clockwise transposition routing in the factoring devices, ex-
changing rules without any livelocks are required. Thus we start from rephrasing
the previous “farthest-first rule” by a 1-dimensional �0 distance function.

Suppose we are comparing two nodes (i, j) and (i, j + 1) with their target
nodes being non-Nil, namely p(i, j) = (i0, j0), p(i, j + 1) = (i1, j1). Intuitively,
the farthest-first rule along rows should be described as

1. |j1 − (j + 1)| > |j0 − j| and |j1 − (j + 1)| ≥ |j1 − j|, or
2. |j0 − j| > |j1 − (j + 1)| and |j0 − j| ≥ |j0 − (j + 1)|.

However, and interestingly, these conditions are not equivalent to the 3rd condi-
tion j0 ≥ j1. In fact, we have the following proposition, which is a beginning of
our discussion. All proofs of the following propositions are omitted, since they
are obtained by elementary arithmetics.

Analysis on the Clockwise Transposition Routing 237

Proposition 1. Suppose a node (i, j) has a packet with its target node (i0, j0)
and a node (i, j +1) has a packet with its target node (i1, j1). Then the following
“farthest-first along the compared direction” rule

1. |j1 − (j + 1)| > |j0 − j| and |j1 − (j + 1)| ≥ |j1 − j|, or
2. |j0 − j| > |j1 − (j + 1)| and |j0 − j| ≥ |j0 − (j + 1)|,

is equivalent to j0 ≥ j1 and j0 + j1 �= 2j+1. Especially, the rule is not equivalent
to the condition j0 ≥ j1.

On the other hand, the following very similar conditions are not equivalent to
the 3rd condition j0 ≥ j1 either.

Proposition 2. In the same assumption to Proposition 1, conditions

1. |j1 − (j + 1)| ≥ |j0 − j| and |j1 − (j + 1)| ≥ |j1 − j|, or
2. |j0 − j| ≥ |j1 − (j + 1)| and |j0 − j| ≥ |j0 − (j + 1)|,

are equivalent to j0+1 ≥ j1. Especially, the rule is not equivalent to the condition
j0 ≥ j1.

In proposition 1, 2, distances between nodes are measured by the �0-distance,
namely absolute values of the difference of coordinate values. By changing the
distance function, we have other possible alternatives for the “farthest-first” rule
as follows:

(a) 1. d((i, j + 1), p(i, j + 1)) > d((i, j), p(i, j)) and d((i, j + 1), p(i, j + 1)) ≥
d((i, j), p(i, j + 1)), or

2. d((i, j), p(i, j)) > d((i, j + 1), p(i, j + 1)) and d((i, j), p(i, j)) ≥ d((i, j +
1), p(i, j)),

(a’) 1. d((i, j + 1), p(i, j + 1)) ≥ d((i, j), p(i, j)) and d((i, j + 1), p(i, j + 1)) ≥
d((i, j), p(i, j + 1)), or

2. d((i, j), p(i, j)) ≥ d((i, j + 1), p(i, j + 1)) and d((i, j), p(i, j)) ≥ d((i, j +
1), p(i, j)).

By a definition d((i, j),Nil) = 0, the above rules include Nil cases. Thus we can
describe the exchanging rule mathematically. Moreover, by applying other dis-
tance functions d(·, ·), other exchanging rules can be obtained. In the followings,
we use 4 distance functions on an m×m mesh or torus:

– 1-dimensional distance in a mesh: dm
1 ((i, j), (i′, j′)) = |i− i′| or |j − j′|

– 1-dimensional distance in a mesh: dt
1((i, j), (i

′, j′)) = min(|i− i′|, m−|i− i′|)
or min(|j − j′|, m− |j − j′|)

– 2-dimensional distance in a mesh: dm
2 ((i, j), (i′, j′)) = |i− i′|+ |j − j′|

– 2-dimensional distance in a mesh: dt
2((i, j), (i

′, j′)) = min(|i − i′|, m − |i −
i′|) + min(|j − j′|, m− |j − j′|)

Note that 0 ≤ dm
1 (·, ·) < m, 0 ≤ dt

1(·, ·) < m/2, 0 ≤ dm
2 (·, ·) < 2m, and

0 ≤ dt
2(·, ·) < m.

238 T. Izu et al.

Let us consider other possible way to rephrase the 3rd condition j0 ≥ j1. In
Proposition 1 and 2, the additional conditions j0 + j1 = 2j + 1 and j1 = j0 + 1
imply dbefore = dafter, where dbefore = d((i, j), p(i, j)) + d((i, j + 1), p(i, j + 1)) =
d((i, j), dafter = d((i, j), p(i, j + 1)) + d((i, j + 1), p(i, j)). By treating this case
separately, we have the following satisfactory rule equivalent to j0 ≥ j1 for
d = dm

1 .

(b) 1. dbefore > dafter, or
2. dbefore = dafter and d((i, j +1), p(i, j +1)) > d((i, j), p(i, j)) and d((i, j +

1), p(i, j + 1)) ≥ d((i, j), p(i, j + 1)), or
3. dbefore = dafter and d((i, j), p(i, j)) > d((i, j + 1), p(i, j + 1)) and d((i, j),

p(i, j)) ≥ d((i, j + 1), p(i, j)).

We also have the following similar conditions:

(b’) 1. dbefore > dafter, or
2. dbefore = dafter and d((i, j +1), p(i, j +1)) ≥ d((i, j), p(i, j)) and d((i, j +

1), p(i, j + 1)) ≥ d((i, j), p(i, j + 1)), or
3. dbefore = dafter and d((i, j), p(i, j)) ≥ d((i, j + 1), p(i, j + 1)) and d((i, j),

p(i, j)),≥ d((i, j + 1), p(i, j)).

Consequently, we obtain 4 mathematical descriptions of the “farthest-first”
rule and 4 distance functions, namely 16 possible exchanging rules. Since we
have no theoretic proofs, terminations are not assured. However, experimental
results and practical availability will be shown in the next section.

4 Experimental Results

This section shows experimental results of some packet exchanging rules. In the
previous section, we established 4 alternative exchanging rules and 4 distance
functions, namely 16 rules. With these rules plus the original 2 rules, we compute
required steps in some cases.

Firstly, we routined the livelock example under these exchanging rules and
with changing the initial step. Numerical results are summarized in Table 3
(m = 4) and Table 4 (m = 8), where ‘u’, ‘r’, ‘lo’, and ‘le’ stands for upper, right,
lower, and left step as an initial step, respectively, and ‘NT’ stands for non-
termination. As described in [GKS+05], the naiveness of the algorithm can be
observed. For example, changing an initial step has an effect of the termination.
Interestingly, beginning from ‘u’ inclines to fall into ‘NT’. Compared to these
results, the number of NT seems more in Table 3. But this may be because of
the smallness of m and does not show any algorithmic defects.

Next, we routined a mesh filled with m2 non-Nil packets with m = 8 (Table
5), and m2 non-Nil packets with m = 8. Of course, although these are just
examples, we can observe some properties. First, the original rule with dm

1 works
well in a sense that it does not fall into ‘NT’. Second, rules (a), (a’) work worse
than (b), (b’). Moreover, an effect of the torus structure is observed. In these
examples, rules (b), (b’) combined with distance functions dt

1, dt
2 work better

than other cases. However, changing initial step seems to have less effect here.

Analysis on the Clockwise Transposition Routing 239

Table 3. Required steps for the livelock example (m = 4)

Distance Original (a) (a’) (b) (b’)
Function u r lo le u r lo le u r lo le u r lo le u r lo le

dm
1 NT 15 14 19 NT 15 14 19 NT 23 22 21 NT 15 14 19 NT 15 14 21

dm
2 — NT NT NT NT 21 16 20 18 38 NT NT NT 17 12 19 15

dt
1 NT NT NT NT NT 12 11 14 NT 23 7 25 NT 15 7 17 NT 16 7 18

dt
2 — NT NT NT NT NT 11 7 13 NT NT NT NT NT 16 7 18

Table 4. Required steps for the livelock example (m = 8)

Distance Original (a) (a’) (b) (b’)
Function u r lo le u r lo le u r lo le u r lo le u r lo le

dm
1 NT 42 36 38 NT NT NT 58 NT NT NT NT NT 42 37 41 NT 40 41 44

dm
2 — NT NT NT NT 41 44 39 46 93 NT NT NT 43 44 39 43

dt
1 NT NT NT NT NT NT 35 NT NT 60 NT NT NT 28 26 32 NT 34 26 37

dt
2 — 62 NT 77 NT 33 32 33 37 40 NT 31 NT 25 31 21 26

Table 5. Required steps for a mesh with m2 non-Nil packets (m = 8)

Distance Original (a) (a’) (b) (b’)
Function u r lo le u r lo le u r lo le u r lo le u r lo le

dm
1 24 22 21 20 45 40 NT NT NT NT 43 NT 22 22 25 22 31 24 22 26

dm
2 — NT NT NT NT 30 44 33 30 39 38 28 34 31 28 28 27

dt
1 NT NT NT NT NT 36 39 NT NT NT NT NT 19 23 18 21 20 22 21 23

dt
2 — NT NT NT NT 25 34 29 27 23 41 30 19 21 22 22 20

Table 6. Required steps for a mesh with m2/8 non-Nil packets (m = 8)

Distance Original (a) (a’) (b) (b’)
Function u r lo le u r lo le u r lo le u r lo le u r lo le

dm
1 16 17 17 16 NT 18 19 20 NT NT NT NT 16 17 17 16 16 17 17 16

dm
2 — NT 18 19 15 16 20 19 20 16 17 17 16 16 17 17 16

dt
1 NT NT NT NT NT NT 17 11 NT NT 35 NT 11 10 10 12 11 12 10 12

dt
2 — NT NT 17 13 11 10 12 12 11 11 10 12 11 12 11 12

5 Improvements

The clockwise transposition is used for both RF and LA steps [LST+02, GS04].
However, the efficiency of RF step case, YASD, is not compatible to TWIRL:
YASD is 6.3 times slower than TWIRL without considering the frequency and
3.2 times with considering the frequency. This section proposes an improvement
on YASD, which establishes two times speed-up.

5.1 Structure of YASD

First, we describe procedures in RF step. Suppose we are going to find relations
(a, b) from a given interval [a0, a0 + S − 1] and a fixed value b (here we assume

240 T. Izu et al.

a0 being even without loss of generality), where a pair (a, b) is called a relation
if it satisfies three conditions (i) gcd(a, b) = 1, (ii) Fr(a, b) is Br-smooth for a
given multivariable polynomial Fr(x, y) and an integer Br, and (iii) Fa(a, b) is
Ba-smooth for a given multivariable polynomial Fa(x, y) and an integer Ba. An
integer x is described as B-smooth if x is a product of prime integers smaller
than B. Since log x ≈∑p<B, p|x log p, the sieving method for RF step proceeds
as follows: first, we prepare S registers s[ai] (ai ∈ [a0, a0 + S − 1]). For each
prime p < B, find the smallest integer a ∈ [a0, a0 + S − 1] such that F (a, b) = 0
(mod p), here F (x, y) = Fr(x, y) or Fa(x, y), and B = Br or Ba. Since the
polynomial F (x, y) has a property that

F (a, b) = 0 (mod p) ⇒ F (a + p, b) = 0 (mod p),

we set s[a] ← s[a] + log p, s[a + p] ← s[a + p] + log p, Finally, pick up a’s
such that s[a] ≈ log F (a, b), which can be treated as candidates as the relations.

YASD is a dedicated factoring device for RF step by using the clockwise
transposition [GS04]. Each node has three parts, the main part, the mesh part,
and the memory part. The main part generates pairs (a, p) such that F (a, b) = 0
(mod p) as packets and these packets are sent to the mesh part. The mesh part
proceeds the clockwise routing as in the previous sections. When a packet reaches
the target node, it is delivered to the memory part which consists of u registers
s[a1], . . . , s[a1+u−1] and the log value log p is accumulated to the corresponding
register s[a]. Note that there is no need to hold all primes in all nodes: In fact
it is sufficient to hold at least 1 node for large primes.

5.2 Use of Sub-torus

This section proposes to use sub-tori for RF step similar to for LA step pro-
posed in [GKS+05]. For an m×m mesh, we divide nodes into 4 sets T o,o, T o,e,
T e,o, T e,e, nodes in odd-rows and odd-columns, nodes in odd-rows and even-
columns, nodes in even-rows and odd-columns, and nodes in even-rows and even-
columns, respectively. Then, we give the torus structure to these sets. Thus we
have 4 sub-tori in the mesh. Since the size of sub-tori is halved, efficient routings
on these sub-tori are expected. But a problem arises: how to generate packets
in which a packet with its target node being odd-odd, for example, is sent to an
odd-odd node from a main part. One idea is to let 1 main part to hold 4 nodes
(odd-odd, odd-even, even-odd, and even-even). Then all packets can be easily
sent to the proper sub-torus. However the frequency is reduced to 1/4. So, we
do not want to change the number of main parts and nodes.

For this problem, we have an algorithmic and hardware-oriented solutions.
In YASD, each prime is held by at least 1 node. We increase the frequency of
each prime 4 times so that all primes can be sent to all types of sub-tori. As a
drawback we require 4 times larger memory for main parts (to hold primes).

The other solution is to put a cyclic permutation buffer device between 4 main
parts and 4 nodes. Let us explain in detail. First, we change the memory part so
that T o,o has registers corresponding to a ∈ [a0, a0+S−1] such that a ≡ 0 mod 4.

Analysis on the Clockwise Transposition Routing 241

Fig. 1. Cyclic wiring between main parts and mesh parts

Similarly, T o,e, T e,o, T e,e correspond to a ≡ 1, 2, 3 mod 4. Next, we divide primes
(except 2) into two sets P1 = { p | p ≡ 1 mod 4 } and P3 = { p | p ≡ 3 mod 4 }.
Moreover, we divide these sets into 8 sets P

(i)
1 = { p ∈ P1 | p ≡ i mod 4 }, P

(i)
3 =

{ p ∈ P3 | p ≡ i mod 4 } (i = 0, 1, 2, 3). The numbers of primes in these sets P
(i)
j

will be almost same. Then, suppose a main part generates packets for a prime
p ∈ P 0

1 and we have a ∈ [a0, a0 + S − 1] such that F (a, b) = 0 (mod p) and
a ≡ 0 (mod 4), Namely the target node of this packet belongs to T o,o. Then,
since the next packet corresponds to a+p, the target node of this packet belongs
to T o,e. Thus the target node of this main part will be changed in a cyclic way:
T o,o, T o,e, T e,o, T e,e, T o,o, Moreover, 4 main parts can generate packets in
this way in simultaneously (see Fig. 1). Here the cyclic permutation device can
be easily implemented so that a drawback of this solution is rather small. By
this improvement. we can establish the reduction about 1/2.

6 Concluding Remarks

This paper analyzed the dedicated hardware device based on the clockwise trans-
position routing. First, we discussed possible alternatives for packet exchanging.
Although we have no theoretic proof of the termination, experimental results
show actual availability of some exchanging rules in the clockwise transposition
for integer factoring. We also proposed an improvement on the routing algorithm
for the relation finding step, which establishes two times speed-up.

242 T. Izu et al.

References

[Ber01] Daniel J. Bernstein, “Circuits for Integer Factorization: A Proposal”,
preprint, 2001. http://cr.yp.to/papers/nfscircuit.pdf

[RSA200] Friedrich Bahr, M. Böhm, Jens Franke, and Thorsten Kleinjung,
“RSA200”, May 2005. http://www.crypto-world.com/announcements/
rsa200.txt

[FKP+05] Jens Franke, Thorsten Kleinjung, Christof Paar, Jan Pelzl, Christine
Priplata, Colin Stahlke, “SHARK: A Realizable Special Hardware Siev-
ing Device for Factoring 1024-bit Integers”, Workshop on Special Purpose
hardware for Attacking Cryptographic Systems (SHARCS), pp.27-37, 2005.
Also, to appear at CHES 2005.

[GKS+05] Willi Geiselmann, Hubert Köpfer, Rainer Steinwandt, and Eran Tromer,
“Improved Routing-based Linear Algebra for the Number Field Sieve”,
IEEE ITCC 2005, 2005.

[GS03a] Willi Geiselmann and Rainer Steinwandt, “A Dedicated Sieving Hard-
ware”, PKC 2003, LNCS 2567, pp.254-266, Springer-Verlag, 2003.

[GS03b] Willi Geiselmann and Rainer Steinwandt, “Hardware to Solve Sparse Sys-
tems of Linear Equations over GF(2)”, CHES 2003, LNCS 2779, pp.51-61,
Springer-Verlag, 2003.

[GS04] Willi Geiselmann and Rainer Steinwandt, “Yet Another Sieveing Device”,
CT-RSA 2004, LNCS 2964, pp.278–291, Springer-Verlag, 2004.

[LL93] Arjen K. Lenstra and Hendrik W. Lenstra, editors. The development of
the number field sieve, Vol. 1554 of Lecture Notes in Mathematics (LNM),
Springer-Verlag, 1993.

[LLP+90] Arjen K. Lenstra, Hendrik W. Lenstra, M.S. Manasse and John M. Pollard,
“The Number Field Sieve”, STOC 1990, pp.564-572, 1990.

[LST+02] Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer, “Analysis
of Bernstein’s Circuit”, ASIACRYPT 2002, LNCS 2501, pp.1–26, Springer-
Verlag, 2002.

[Sha99] Adi Shamir, “Factoring Large Numbers with the TWINKLE Device (ex-
tended abstract)”, CHES 1999, LNCS 1717, pp.2-12, Springer-Verlag, 1999.

[ST03] Adi Shamir and Eran Tromer, “Factoring Large Numbers with the TWIRL
Device”, CRYPTO 2003, LNCS 2729, pp.1–26, Springer-Verlag, 2003.

mCrypton – A Lightweight Block Cipher for
Security of Low-Cost RFID Tags and Sensors

Chae Hoon Lim and Tymur Korkishko

Dept. of Internet Engineering, Sejong University, Korea
Samsung Advanced Institute of Technology (SAIT), Korea

chlim@sejong.ac.kr, k.tymur@samsung.com

Abstract. This paper presents a new 64-bit block cipher mCrypton
with three key size options (64 bits, 96 bits and 128 bits), specifically
designed for use in resource-constrained tiny devices, such as low-cost
RFID tags and sensors. It’s designed by following the overall architec-
ture of Crypton but with redesign and simplification of each compo-
nent function to enable much compact implementation in both hardware
and software. A simple hardware implementation of mCrypton is also
presented to demonstrate its suitability to our target applications. Our
prototype implementation based on the straightforward 1 cycle/round
architecture just requires about 3500 to 4100 gates for both encryp-
tion and decryption, and about 2400 to 3000 gates for encryption only
(under 0.13μm CMOS technology). The result shows that the hardware
complexity of mCrypton is quite well within an economic range of low-
cost RFID tags and sensors. A more compact implementation under
development promises that further size reduction around 30% could be
achievable using the 5 cycles/round architecture.

1 Background

The ubiquitous computing paradigm pursues true elimination of time and space
barriers by embedding wirelessly networked processors in everyday objects and
thereby making a variety of services available to users all the time everywhere.
The ubiquitous computing vision however could bring a great deal of security
risks due to the ubiquity of tiny interconnected devices embedded into everyday
environments [2, 11]. In particular, much research attention has been recently
paid to the security and privacy issues of RFID and sensor networks [4, 9].

Traditionally, block ciphers have been used as a basic security building block
for most resource-constrained applications, such as smart cards and security to-
kens. The same and even more compelling reasoning can apply to tiny ubiquitous
devices such as low-cost RFID tags and sensors. In such resource-constrained de-
vices it is undesirable or even impossible to implement multiple security primi-
tives for cost reason. So a compact, hardware- and software-efficient block cipher
could be the most promising candidate for security in such applications.

Design Constraints. Typical ubiquitous computing devices however impose
new constraints in block cipher design due to their size and shape [11]. First of
all, the chip area required for hardware implementation of a block cipher should

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 243–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 C.H. Lim and T. Korkishko

be small enough not to much increase the cost of ubiquitous devices due to
the added security feature. For example, in the case of low-cost RFID tags, one
of the most resource-scarce ubiquitous computing devices, it is estimated that
security resources available to a 5 cent design may be limited to hundreds of
bits of storage, roughly 500-5,000 gates [12]. Note that low-cost RFID tags only
have a simple logic for data processing even without CPU, so the only way to
implement a crypto algorithm would be its hardware integration into tag chips.

Another and more critical issue in tiny ubiquitous devices is the limited
amount of power available. Only a small, finite amount of energy may be avail-
able through a miniature battery to the tiny processors embedded in ubiquitous
computing devices such as mote-class sensors. Even more cheap devices, such
as passive RFID tags, cannot be self-powered and thus should obtain energy
from larger communicating devices through electromagnetic coupling. This lim-
ited power availability places a bound on the total amount of computation such
devices can perform, rather than on the speed. Therefore, the most relevant per-
formance figure here might be bits per joule rather than the traditional bits per
second. In this respect, most widely-used block ciphers such as AES may not be
much attractive for use in such limited computing environments.

Design Objectives and Choices. The block cipher mCrypton is designed
with above new constraints in low-cost ubiquitous computing devices in mind.
The goal is to design a block cipher with extreme efficiency in resource usage
and power consumption, so that they can be hardware integrated or software
implemented in tiny processors embedded in inexpensive everyday commodities.
The design of mCrypton is based on the overall architecture of Crypton [7]
(mCrypton actually stands for a miniature of Crypton and can be thought of as
a 64-bit variant of Crypton with variable key sizes). The basic building blocks
were redesigned to fit the block/key sizes and the overall architecture was a little
bit simplified for better implementation efficiency. The key scheduling algorithm
was also completely redesigned.

The main objective of designing mCrypton is to come up with a block cipher
optimized for resource-constrained applications, so we decided to use the param-
eters of 64-bit block length and variable key lengths of 64 bits, 96 bits and 128
bits. Note that a large volume of bulk data encryption is unnecessary or even im-
possible in most tiny ubiquitous computing devices. Therefore, there will be no
security concern with small block size and it will be a natural choice for new de-
sign of a block cipher with specific application to extremely resource-constrained
devices. We also decided to provide three key size options (for minimal, moderate
and standard security, respectively) for better flexibility of cost-security trade-
offs. Note that production cost may be one of most critical factors in practice
for large scale deployment of tiny devices such as low-cost RFID tags.

Minimizing power consumption certainly should be one of most important
considerations in software/hardware design for tiny ubiquitous devices. In gen-
eral, a block cipher will be more power-efficient in hardware/software implemen-
tations if it can be implemented using less amount of computing resources. So
one obvious goal in designing a block cipher should be to achieve low complex-

mCrypton – A Lightweight Block Cipher 245

ity in hardware and software while providing sufficient security. Furthermore,
power consumption in CMOS hardware largely depends on signal transition fre-
quency during the processing. For example, branched signal paths may cause
dynamic hazards (multiple signal transitions before being stable) due to dif-
ferent arrival times at a logic gate, which consumes extra power. So, from the
standpoint of algorithm design, it would be preferable to make signal paths as
uniform as possible and to reduce signal transition probability as possible as one
can. These considerations would provide good reasons of basing our design on
the overall structure of Crypton: It has a regular and quite uniform structure
with its component functions efficiently implementable in both hardware and
software.

Related Work. There is no published literature recognized by the authors for
new design of block ciphers targeted to tiny ubiquitous devices. As a related
work to RFID security, Bono et al. reported successful reverse engineering and
key cracking for the secret algorithm (with only 40-bit key size) embedded in the
currently circulating TI RFID tags [1]. Their work once again signifies the im-
portance of using well-scrutinized open crypto algorithm for wide deployment of
security products. As a related work to efficient implementation on RFID tags,
Feldhofer et al. presented an 8-bit architecture, encryption-only mode implemen-
tation of AES for RFID authentication, which consumes about 3,600 gates and
requires about 1,000 clock cycles at 100KHz for one block encryption [3].

On the other hand, the TinySec implementation experience provides valuable
information on feasibility of software implementation of a block cipher in low-
cost sensor nodes [5]. Implementation experiments in Mica2 mote (8 MHz 8-bit
Atmel ATMEGA128L MCU with 4KB of RAM, 128 KB of flash (program space)
and 4KB of EEPROM, Chipcon radio module of up to 19.2 Kbps bandwidth)
showed that there was almost no performance degradation even with software
implementation of RC5 in Mica2 sensor nodes. Of course, the situation may
be different for sensor nodes with faster radio, such as Telos (8 MHz 16-bit TI
MSP430 MCU with 4KB of RAM, 60KB of flash and 16KB of EEPROM) whose
IEEE 802.15.4 radio can transmit at a much faster data rate of 250 Kbps [10].

General rule of thumb on the performance of security primitives required for
sensor nodes is that one block processing should be completed in under a few
byte times to avoid performance degradation due to the added cryptographic
operation, where byte time refers to the time required to transmit a single byte
over the radio [5]. Interestingly, Law et al. reported bench-marking data for var-
ious block ciphers on TI MSP430 MCU adopted by the Telos mote [6]. Their
performance result (on speed-optimized counter mode) shows that RC5 requires
85μsec (at 8MHz) per block encryption using 5.2Kbytes of code memory, while
AES requires 27μsec using 13.3Kbytes of memory. Since the byte time of Telos
mote is 32μsec, we can see that software implementation of cryptographic oper-
ations may be acceptable even for low-end sensor nodes. This also shows that
software efficiency (in particular on low-end 8-bit and 16-bit microprocessors)
should be an important consideration in designing a block cipher for ubiquitous
computing security.

246 C.H. Lim and T. Korkishko

Notation. The following notation will be used throughout this paper:

– A 4-bit string is denoted by nibble and one byte of data is represented by
two 4-bit nibbles numbered from left to right (i.e., b = b0‖b1). Similarly, one
word of data consists of two bytes numbered from left to right.

– An 8-byte data consisting of 16 nibbles {a0, a1, · · · , a15} is internally repre-
sented as a 4× 4 nibble array as follows:

A =

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

=

Ar[0]
Ar[1]
Ar[2]
Ar[3]

= (Ac[0]Ac[1]Ac[2]Ac[3]) ,

where Ar[i] and Ac[i] denote the i-th row and column of A, respectively.

– For an array A, At denotes transposition of A.
– X�k: left rotation of a 16-bit word X by k-bit positions.
– f ◦ g: composition of functions f and g, i.e., (f ◦ g)(x) = f(g(x)).
– •,⊕: bit-wise logical operations for AND and XOR, respectively.

2 Algorithm Specifications

mCrypton processes an 8-byte data block by representing it into a 4× 4 nibble
array as in Crypton [7]. The round transformation consists of four steps: nibble-
wise substitution, column-wise bit permutation, column-to-row transposition,
and then key addition. The encryption process involves 12 repetitions of the same
round transformation. The decryption process can be made almost identical to
the encryption process with a different key schedule.

2.1 Basic Building Blocks

Nonlinear Substitution γ. The nonlinear transformation γ consists of nibble-
wise substitutions on a 4 × 4 nibble array using four 4-bit S-boxes, Si (0 ≤ i ≤
3), such that S2 = S−1

0 and S3 = S−1
1 (see Section 3.2 for details). Each

component substitution function γi operates on the 4-nibble vector of the i-th
row (or column). That is, for a 4-nibble word a = (a0, a1, a2, a3)

γi(a) = (Si(a0), Si+1(a1), Si+2(a2), Si+3(a3)),

where indices are taken modulo 4 (see Fig.1).

a0 a1 a2 a3 S0(a0) S1(a1) S2(a2) S3(a3)

a4 a5 a6 a7 −→ S1(a4) S2(a5) S3(a6) S0(a7)

a8 a9 a10 a11 S2(a8) S3(a9) S0(a10) S1(a11)

a12 a13 a14 a15 S3(a12) S0(a13) S1(a14) S2(a15)

Fig. 1. The nibble-wise substitution γ

mCrypton – A Lightweight Block Cipher 247

The transformation γ and γ−1 can thus be defined for 4× 4 data array A by

γ(A) = (γ0(Ac[0]) γ1(Ac[1]) γ2(Ac[2]) γ3(Ac[3]))

= (γ0(Ar[0]) γ1(Ar[1]) γ2(Ar[2]) γ3(Ar[3]))t

γ−1(A) = (γ2(Ac[0]) γ3(Ac[1]) γ0(Ac[2]) γ1(Ac[3]))

= (γ2(Ar[0]) γ3(Ar[1]) γ0(Ar[2]) γ1(Ar[3]))t.

Note that the symmetry in S-box arrangement ensures that γ/γ−1 and τ com-
mute, i.e., τ ◦ γ = γ ◦ τ and τ ◦ γ−1 = γ−1 ◦ τ (see below the definition for τ).
Obviously, we have γi(a) = γ0(a�16−4i)�4i.

Bit Permutation π. The bit permutation π bit-wise mixes each column of 4×4
array A using column permutation πi for each column i (0 ≤ i ≤ 3) (Fig.2):

π(A) = (π0(Ac[0]) π1(Ac[1]) π2(Ac[2]) π3(Ac[3]))

Each component column permutation πi is defined for nibble columns a =
(a0, a1, a2, a3)t and b = (b0, b1, b2, b3)t by

b = πi(a) ⇔ bj = ⊕3
k=0(mi+j+k mod 4 • ak),

where four masking nibbles mi’s are given by

m0 = 11102, m1 = 11012, m2 = 10112, m3 = 01112.

Ac[0] Ac[1] Ac[2] Ac[3] −→ π0(Ac[0]) π1(Ac[1]) π2(Ac[2]) π3(Ac[3])

Fig. 2. The column-wise bit permutation π

Note that the π transformation is involution (i.e. π = π−1) and satisfies the
shift property: πi(a) = π0(a)�4i. and πi(a�4k) = πi(a)�16−4k,where cyclic shift
on a column vector should be interpreted aover its row-transformed equivalent.

Column-to-Row Transposition τ . It simply moves the nibble at the (i, j)-th
position to the (j, i)-th position, i.e., B = τ(A) ⇔ bij = aji. Obviously, τ−1 = τ .

Key Addition σ. For a round key K = (K[0], K[1], K[2], K[3]), B = σK(A)
is defined by Br[i] = Ar[i]⊕K[i] (0 ≤ i ≤ 3).

248 C.H. Lim and T. Korkishko

2.2 Encryption and Decryption

The encryption round transformation ρ of mCrypton consists of applying γ, π, τ
and σ in sequence to the 4× 4 data array. More specifically, the round functions
for encryption and decryption are defined (for round key K) by

ρK = σK ◦ τ ◦ π ◦ γ,

ρ−1
K = γ−1 ◦ π ◦ τ ◦ σK

For 4 × 4 data array A and round key K, we can express B = ρK(A) using
the component functions γi’s and πi’s as

Bc[i] = πi(γi(Ac[i]))t ⊕K[i] = π0(γ0(Ac[i]�16−4i))t ⊕K[i] (0 ≤ i ≤ 3).

Let us define ρ′K as ρ′K = σK ◦ τ ◦ π ◦ γ−1, i.e., the round transformation
obtained by replacing γ by γ−1 in ρK , which will be used as a decryption round
transformation below. Then ρ′K(A) can be similarly expressed as:

Bc[i] = πi(γi+2(Ac[i]))t ⊕K[i] = πi((γi(Ac[i]�8)�8))t ⊕K[i] (0 ≤ i ≤ 3)

Let Ki
e be the i-th encryption round key consisting of 4 words, derived from a

user-supplied key K using the encryption key schedule. The encryption transfor-
mation EK of mCrypton under key K consists of an initial key addition and 12
times repetitions of ρ and then a final output transformation. More specifically,
EK can be described as

EK = φ ◦ ρK12
e
◦ ρK11

e
◦ · · · ◦ ρK2

e
◦ ρK1

e
◦ σK0

e
,

where φ is defined by φ = τ ◦ π ◦ τ .
Since γ−1 uses the same S-boxes as γ only with a different arrangement, we

can imagine that decryption process can be made to have almost the same archi-
tecture as encryption process by using φ-transformed round keys. The decryption
transformation DK can be shown to have almost the same form as EK :

DK = φ ◦ ρ′K12
d
◦ ρ′K11

d
◦ · · · ◦ ρ′K2

d
◦ ρ′K1

d
◦ σK0

d
,

where the decryption round keys are defined by

Kr−i
d = φ(Ki

e) for 0 ≤ i ≤ 12.

Note that the output transformation φ can be incorporated into the final round
as φ ◦ ρK12

e
= τ ◦ π ◦ τ ◦ (σK12

e
◦ τ ◦ π ◦ γ) = σK0

d
◦ τ ◦ γ.

2.3 Key Scheduling

mCrypton supports three key sizes: 64 bits, 96 bits and 128 bits. The 64-bit key
size may certainly be not enough for adequate security in general computing
environments, but it may provide still good security in resource-constrained,
cost-driven applications such as low-cost RFID tags. On the other hand, with

mCrypton – A Lightweight Block Cipher 249

96-bit keys we will be able to achieve moderate security in most applications.
In general, however, it would be more desirable to use the current standard key
size of 128 bits in any application if there is no severe restriction on available
resources.

The key scheduling algorithm for mCrypton consist of two stages: round key
generation through nonlinear S-box transformation and then key variables up-
date through simple rotations (word-wise rotation and bitwise rotation within
word). The simple linear key variables update makes it easy to carry out back-
ward processing for decryption key schedule and the nonlinear round key gen-
eration together with linear update of key variables in each round provides the
basis for the security against various attacks on key scheduling algorithms.

Let K = {K[i]}t−1
i=0 = (K[0], K[1] · · ·K[t− 1]) be the user key (t = 4, 6, 8 for

key sizes of 64, 96, 128 bits, respectively), where K[i] represents the i-th 16-bit
key word in K. Let C[i] be the round constant for round i (we will regard the
initial key addition as round 0 for notational purpose). Each round constant C[i]
consists of four identical nibbles, i.e., C[i] = 0xcicicici, where ci is generated by
xi in GF(24) defined by the irreducible polynomial f(x) = x4 + x + 1 (That is,
c0 = 1, c1 = 2, · · · , c4 = 3, c5 = 6, · · ·, etc.).

Specific key schedules for each key size are now presented in the following.
Here U = {U [i]}t−1

i=0 and V = {V [i]}t−1
i=0 will be used as key registers for state

update in encryption and decryption key schedules, respectively. Note that φi =
τ ◦ πi ◦ τ (0 ≤ i ≤ 3). The S-box operation on a word in the key schedule is
performed in nibble-wise with the same S-box S0, i.e., for a = (a0, a1, a2, a3),
S(a) = (S0(a0), S0(a1), S0(a2), S0(a3)). We also use four masking words Mi to
take the i-th nibble from word, i.e., M0 = 0xf000, M1 = 0x0f00, M2 = 0x00f0,
M3 = 0x000f.

Key Schedule for 64-Bit Keys

– Encryption round keys: The key register U is first initialized with K and
then encryption round keys are computed for round r = 0, 1, · · · , 12 as:

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [0] ⊕ T3)

U ← (U [1], U [2], U [3], U [0]�3)

– Decryption round keys: The key register V is first initialized as

V ← (K[0]�9, K[1]�9, K[2]�9, K[3]�9).

Then decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [0] ⊕ T3))

V ← (V [3]�13, V [0], V [1], V [2])

250 C.H. Lim and T. Korkishko

Key Schedule for 96-Bit Keys

– Encryption round keys: The key register U is first initialized with the user
key K and encryption round keys are successively computed as follows: for
round r = 0, 1, · · · , 12,

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [4] ⊕ T3)

U ← (U [5], U [0]�3, U [1], U [2], U [3]�8, U [4])

– Decryption round keys: The key register V is first initialized as

V ← (K[0]�6, K[1]�6, K[2]�6, K[3]�6, K[4]�6, K[5]�6),

and decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [4] ⊕ T3))

V ← (V [1]�13, V [2], V [3], V [4]�8, V [5], V [0])

Key Schedule for 128-Bit Keys

– Encryption round keys: The key register U is first initialized with the user
key K and encryption round keys are successively computed as follows: for
round r = 0, 1, · · · , 12,

T ← S(U [0]) ⊕ C[r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
e ← (U [1] ⊕ T0, U [2] ⊕ T1, U [3] ⊕ T2, U [4] ⊕ T3)

U ← (U [5], U [6], U [7], U [0]�3, U [1], U [2], U [3], U [4]�8)

– Decryption round keys: The key register V is first initialized as

(V [0], V [1], · · · , V [7]) ← (K[4]�3, K[5]�14, K[6]�3, K[7]�14 ,

K[0]�14 , K[1]�3, K[2]�14, K[3]�3),

and decryption round keys are successively computed as follows: for round
r = 0, 1, · · · , 12,

T ← S(V [0]) ⊕ C[12 − r], Ti ← T • Mi (0 ≤ i ≤ 3),

Kr
d ← (φ0(V [1] ⊕ T0), φ1(V [2] ⊕ T1), φ2(V [3] ⊕ T2), φ3(V [4] ⊕ T3))

V ← (V [3]�13, V [4], V [5], V [6], V [7]�8, V [0], V [1], V [2]).

3 Security Analysis

3.1 Diffusion Property of Linear Transformation

First note that it suffices to consider any one component transformation πi of π to
examine the diffusion property of π, since π acts on each column independently. It

mCrypton – A Lightweight Block Cipher 251

is also easy to see that any column vector with n (n < 4) nonzero nibbles is trans-
formed by πi into a column vector with at least 4−n nonzero nibbles (this number
4 is called as the diffusion order of πi). This is due to the operation of exclusive-or
sum in π. More important is that such input vectors giving minimum diffusion take
only a very small fraction of all possible inputs due to the masked bit permutation.

Let us examine in more detail the set of 16-bit numbers giving minimal dif-
fusion. For this, we define two sets of 4-bit values, Ωx and Ωy, as

Ωx = {0x1, 0x2, 0x4, 0x8}, Ωy = {0x5, 0xa} ∪Ωx.

Let Ij be a set of input vectors with j nonzero nibbles which are transformed
by πi into output vectors with 4 − j nonzero nibbles. Then all possible 16-bit
values with minimum diffusion can be obtained as:

I1 = {(x, 0, 0, 0)t, (0, x, 0, 0)t, (0, 0, x, 0)t, (0, 0, 0, x)t | x ∈ Ωx},
I2 = {(x, x, 0, 0)t, (0, x, x, 0)t, (0, 0, x, x)t, (x, 0, 0, x)t | x ∈ Ωx},
I∗2 = {(y, 0, y, 0)t, (0, y, 0, y)t | y ∈ Ωy},
I3 = {(0, x, x, x)t, (x, 0, x, x)t, (x, x, 0, x)t, (x, x, x, 0)t | x ∈ Ωx}.

Then, it is easy to see that an element in Ij is transformed by πi into some
element in I4−j depending on the nonzero value x. The set I∗2 , containing two
separated nonzero nibbles, is somewhat special: it has 12 elements and is closed
under πi. In summary,

a ∈ Ij ⇒ πi(a) ∈ I4−j for j = 1, 2, 3,
a ∈ I∗2 ⇒ πi(a) ∈ I∗2 .

Type-1 Type-2 Type-3 Type-4

x 0 0 0 x 0 0 0 x 0 0 0 x 0 x 0
0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 x 0 0 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x x x 0 x 0 0 x x 0 x 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x 0 x 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x 0 x x 0 x x x x 0 x x 0 x 0 x
x 0 x x 0 0 0 0 0 0 0 0 0 0 0 0
x 0 x x 0 0 0 0 x 0 x x 0 x 0 x
0 0 0 0 0 x x x 0 0 0 0 0 0 0 0

⇓ ⇓ ⇓ ⇓
x 0 0 0 0 0 0 0 0 x 0 x 0 0 0 0
0 0 0 0 0 x x 0 0 0 0 0 x 0 x 0
x 0 0 0 0 x x 0 0 x 0 x 0 0 0 0
x 0 0 0 0 x x 0 0 x 0 x x 0 x 0

Fig. 3. Examples of active nibble propagation in each diffusion type (x : active nibble)

252 C.H. Lim and T. Korkishko

Since |I1| = |I2| = |I3| = 16 and |I∗2 | = 12, we can see that there are only 60
vectors with minimum diffusion. Observe that the nonzero nibbles in each input
vector should have the same value to achieve minimum diffusion. Also note that
the two values in Ωy −Ωx can only occur in the set I∗2 .

Now let us examine the diffusion effect of τ ◦ π through consecutive rounds
by assuming that in each round the S-box output can take any desired value,
irrespective of the input value. This assumption is to maximally take into account
the probabilistic nature of S-box transformation without details of the S-box
characteristics. Since it suffices to consider worst-case propagations, we only
examine inputs with 1, 2, or 3 nonzero nibbles in any one column vector of a
4× 4 nibble array, say the first column. The result is depicted in Fig.3. The sum
of the number of nonzero nibbles throughout the evolution is of great importance
to ensure resistance against differential and linear cryptanalysis(DC/LC). It is
easy to see that the number of nonzero nibbles per round is repeated with period
4 and their sum up to round 8 is at least 32.

3.2 S-Boxes Construction and Their Property

The maximum characteristic and linear approximation probabilities for an n×n
S-box S (δS and λS for short) can be defined as follows. Let X and Y be the set of
all possible 2n inputs/outputs of S, respectively. Then δS and λS are defined by

δS
def= max

Δx �=0,Δy

#{x ∈ X |S(x)⊕ S(x⊕Δx) = Δy}
2n

,

λS
def= max

Γx,Γy �=0

(|#{x ∈ X |x • Γx = S(x) • Γy} − 2n−1|
2n−1

)2

.

The nonlinear transformation adopted in mCrypton is substitution using four
4 × 4 S-boxes, Si (i = 0, 1, 2, 3) such that S−1

0 = S2 and S−1
1 = S3. These

4-bit S-boxes were searched for over some limited space of good 4-bit permuta-
tions produced by field inversion and affine transformation in GF(24) (actually
in GF((22)2), i.e., x → ax−1 + b, a, b ∈ GF((22)2) . The main selection criteria
is that the number of high-probability difference pairs (selection patterns, resp.)
in the resulting S-boxes should be as small as possible when the input is re-
stricted to the minimal diffusion set Ωy. This is to ensure that high-probability
differences/selection patterns should be more rapidly diffused by linear transfor-
mations and that it should be more difficult to form a chain of high-probability

Table 1. The selected 4 × 4 S-boxes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 4 15 3 8 13 10 12 0 11 5 7 14 2 6 1 9
S1 1 12 7 10 6 13 5 3 15 11 2 0 8 4 9 14
S2 7 14 12 2 0 9 13 10 3 15 5 8 6 4 11 1
S3 11 0 10 7 13 6 4 2 12 14 3 9 1 5 15 8

mCrypton – A Lightweight Block Cipher 253

S-box characteristics/linear approximations through consecutive rounds. Table 1
shows the four 4-bit S-boxes selected.

The inversion function in GF(24) is well-known to be differentially 4-uniform
and have the nonlinearity of 2−1, so the characteristic/linear probabilities of the
S-boxes are limited to at most δSi = 4

16 = 2−2 and λSi = (4
8)2 = 2−2.

More importantly, if the input is restricted to the minimum diffusion set Ωy,
the maximum entry value in DC/LC tables is at most 2. So, for the best-case
analysis of DC and LC, we define these probabilities as

pd
def= δ

Ωy

Si
=

2
16

= 2−3, pl
def= λ

Ωy

Si
= (

2
8
)2 = 2−4.

3.3 Differential/Linear Cryptanalysis

The complexity of DC and LC is completely determined by the number of ac-
tive S-boxes involved and their characteristic/linear approximation probabilities.
Since the number of active S-boxes involved in any 8-round characteristic/linear
approximation is at least 32, we can obtain the most rough upper bound for the
best 8-round characteristic/linear approximation probability as (2−2)32 = 2−64

without details of the S-box characteristic/nonlinear properties.
However, the minimum number of active S-boxes can be obtained only for

the difference pairs/selection patterns in the minimum diffusion set and the best
S-box characteristic/linear approximation probabilities that can be achieved for
the values in the minimum diffusion set in our selected S-boxes are at most pd =
2−3 and pl = 2−4. Since it is reasonable to assume that a characteristic/linear
approximation involving a smaller number of active S-boxes with smaller S-
box characteristic/linear approximation probabilities should give better overall
probability than a characteristic/linear approximation involving a larger number
of active S-boxes with larger probabilities. Therefore, we can obtain a tighter
bound for the 8-round characteristic/linear approximation probabilities as

pC8 ≤ (pd)32 = 2−96, pL8 ≤ (pl)32 = 2−128.

Actually we can find such characteristics (no linear approximation, however)
by careful examination of DC/LC tables together with minimum diffusion pat-
terns. Note however that the probability of 2−64 is the threshold for applicability
of DC/LC since the number of all possible difference pairs/selection patterns
cannot exceed 264 in 64-bit block ciphers. There also exist a number of variants
or generalizations of differential and linear cryptanalysis, but theses attacks are
unlikely to much reduce the attack complexity. We thus strongly believe that
12-round mCrypton is far secure against differential/linear cryptanalysis.

We should also consider a variety of other cryptanalysis techniques for the
security of mCrypton, such as algebraic attacks, related key attacks and key
schedule cryptanalysis, etc. We believe that these attacks are equally unlikely
for 12-round mCrypton as in the case of Crypton (see [7] for further discussion
on the applicability of these attacks to mCrypton).

254 C.H. Lim and T. Korkishko

4 Implementation Efficiency

4.1 Software Efficiency

The overall structure of mCrypton allows a very high degree of parallelism. This
results in high efficiency and flexibility in both software and hardware imple-
mentations. The encryption round of mCrypton can be efficiently implemented
using lookup tables by precomputing and storing 4 tables, each containing six-
teen 16-bit words, such that for 0 ≤ j ≤ 16,

SS0[j] = S0[j] ∧m0 ‖ S0[j] ∧m1 ‖ S0[j] ∧m2 ‖ S0[j] ∧m3,

SS1[j] = S1[j] ∧m1 ‖ S1[j] ∧m2 ‖ S1[j] ∧m3 ‖ S1[j] ∧m0,

SS2[j] = S2[j] ∧m2 ‖ S2[j] ∧m3 ‖ S2[j] ∧m0 ‖ S2[j] ∧m1,

SS3[j] = S3[j] ∧m3 ‖ S3[j] ∧m0 ‖ S3[j] ∧m1 ‖ S3[j] ∧m2,

where ‖ denotes concatenation of bit strings. These four extended S-boxes alto-
gether take a storage of only 128 bytes, small enough to be used even in very
limited computing environments such as mote-class sensor nodes. With these
lookup tables, we can implement one round of mCrypton only using 20 table
lookups (16 to SS tables and 4 to round key tables).

Note that for decryption we need 8-bit rotated versions of the above extended
SS-boxes and we also need the original S-boxes for key scheduling. This will not
be any problem in most computing environments since the storage requirement
is still at most 320 bytes altogether. Further, there may be no need of storing
rotated versions of SS tables in more resource-constrained 8-bit processors, since
the same SS tables can be used for decryption as well by referring to the second
byte of the table entry first. The four S-boxes may also be stored more compactly
only using 32 bytes of storage if desirable. So in this minimal setting we only
need 160 bytes of storage for four SS-boxes and four S-boxes.

We also need to consider the key scheduling overhead in software implementa-
tions. Real-time computation of round keys for every block of encryption/decrypt-
ion should be the last choice even in the resource-constraineddevices since its com-
putational overhead is nevernegligible. mCrypton requires two set of 52 round keys
of 16 bits for both encryption and decryption, corresponding to a storage of 208
bytes. This amount of temporary storage (RAM) will not be much overhead even
in typical sensor nodes such as Mica2 motes. Therefore, we can see that mCryp-
ton can be very efficiently implemented even in the very restricted 8-bit computing
environments. Furthermore, mCrypton will be particularly efficient on 16-bit plat-
forms such as Telos motes, since most operations are performed over 16-bit words.

4.2 Hardware Efficiency

Efficiency in low-cost hardware implementation is one of main design objectives
of mCrypton. Each component function is carefully designed with hardware im-
plementations in mind. To check the hardware complexity of mCrypton, a simple,
straightforward hardware was designed and simulated. The processor is based

mCrypton – A Lightweight Block Cipher 255

M2

M3

Pi

DOUT

Datapath

Sigma

Tau
Gamma

DIN

last_
round

load

DataReg

ed

M1

KeyReg

Rcon
Round keys

SFT1

SFT2

KEY

ed
load

ed

round_num

Key scheduler

Control
Unit

CLK

RST

DIN_RDY

MODE(ed)

load

last_round
round_num

DOUT_RDY

SFT0

RKey

Fig. 4. Hardware architecture of mCrypton processor

on the implementation of a single round per clock cycle and transforms input
data in 13 clocks as depicted in Fig.4.

The circuit can start processing as soon as key and data are available on their
input pins (loaded in parallel), and execute both encryption and decryption in
13 rounds, where each round consists of π ◦ γ ◦ τ ◦ σ, except for the last round,
which corresponds to π◦σ. Here note that for simplicity we process data and key
internally in column basis, instead of in row basis described in the specification.
Encryption and decryption rounds share the same datapath logic. Note that
encryption and decryption rounds make use of just different arrangement of the
same S-boxes. Therefore, γ and γ−1 can be implemented using a single set of
16 S-boxes and a pair of appropriate selectors (multiplexers). This is actually
achieved in the γ transformation in Fig.4.

Key scheduler logic generates round keys from a given user key (64, 96, or 128
bits) and supplies them to the datapath for both encryption and decryption. The
initial secret key for encryption (decryption, resp.) is first loaded into the key
register KeyReg from which round keys are generated by the RKey component,
where round constants C[r]’s are generated by the Rcon component. The key
register is then updated for next round key generation through specified rotations
SFT1 (SFT2 for decryption, resp.).

The architecture shown in Fig.4 has been implemented for each key size using
0.13μm CMOS technology. The encryption-only mode is also implemented as
well as the full (encryption and decryption) mode, since encryption capability is
often sufficient for security in more resource-constrained low-cost RFID tags. The
resulting gate counts (1 gate = 2-input NAND gate-equivalent) are summarized
in Table 2. As can be seen from the table, elimination of decryption components

256 C.H. Lim and T. Korkishko

Table 2. Hardware complexity (number of gates) of the mCrypton processor

Mode Encryption & decryption Encryption-only
Key size 64 bits 96 bits 128 bits 64 bits 96 bits 128 bits
Key scheduler 1338 1649 1952 736 992 1249

KeyReg 320 480 640 320 480 640
Rcon 52 52 52 21 21 21
φ function 288 288 288 0 0 0
S-box 107 107 107 107 107 107
Other logic 571 722 865 288 384 481

Round func. 2020 2020 2020 1588 1588 1588
DataReg 320 320 320 320 320 320
γ function 880 880 880 448 448 488
π function 288 288 288 288 288 288
Key xor(σ) 192 192 192 192 192 192
Other logic 340 340 340 340 340 340

Control unit 61 61 61 61 61 61
Routing 54 59 75 35 40 51
Total 3473 3789 4108 2420 2681 2949

greatly (more than 25%) reduces the overall complexity. We can see that the full
mode consumes about 3.5K to 4.1Kgates while the encryption-only mode about
2.4K to 3.0Kgates, depending on key sizes. The gate count for encryption-only
modes appears to be well within an economic range of 5-cent RFID tags.

The critical path delay (CPL) of our implemented architecture can be rela-
tively long, since it traverses from round key generation to round function eval-
uation. However, it turned out that the maximum CPL was still less than 9 ns
(allowing frequency over 100MHz) even for the full mode of 128-bit key version.
We did not much concentrate on speed issues during our implementation, since
operating frequencies in our target applications are extremely low: Most modern
UHF RFID chips use on-board oscillators with frequencies over 1MHz and most
mote-class sensor nodes operate at frequencies below 10MHz. Nevertheless, if

M
 3

S
 i g m

 a

DOUT

D
 a t a p

 a t h

T
 a u

G
 a m

 m
 a

P
 i

DIN

l o a d

D
 a t a R

 e g

l a s t _

r o u n d

Round keys

Fig. 5. Alternative datapath architecture for shorter delay

mCrypton – A Lightweight Block Cipher 257

higher performances are preferred, the architecture may be modified as shown
in Fig.5. This architecture may reduce the CPL to almost a half of the original
but may somewhat increase the gate count in the case of encryption-only mode,
mainly due to the added complexity of the last round key conversion.

To further reduce the hardware complexity, we may adopt multiple clock cy-
cles/round architectures. At the minimum we may process input data in column-
by-column basis, based on the 5 cycles/round architecture. In this case the core
datapath logic can only implement four S-boxes, one πi transformation and 16
XORs. We are now developing such an architecture for more compact implemen-
tation. Our preliminary analysis based on the this architecture promises that the
overall hardware complexity can be considerably reduced (by about 30%). For
example, the encryption-only mode with 128-bit keys may be implemented with
about 2000 gates and the full mode with about 2500 gates.

Finally, we note that we did not consider any specific power consumption
minimization during the implementation. Clearly we would have to sacrifice the
circuit size more or less to apply power consumption minimization strategies
(e.g., see [8]). One way to reduce power consumption in the present architecture
would be to reduce the operating frequency (say, far below 100KHz), as far as it
satisfies the minimum response time required by standards such as EPC Gen2
and ISO/IEC 18000-6 (e.g., see [3]).

5 Conclusion

We presented a 64-bit block cipher mCrypton specifically designed for security
in resource-constrained applications, such as low-cost RFID tags and sensors,
and analyzed its security and efficiency. mCrypton is based on the proven archi-
tecture of Crypton with some improvements in hardware and software efficiency
under restricted environments. It also incorporates a flexible key schedule with
key sizes of 64 bits, 96 bits and 128 bits, which may provide greater flexibility
in cost-security tradeoffs often encountered in cost-driven applications such as
low-cost RFID tags. Our preliminary security analysis shows that mCrypton is
far secure against well-known attacks on block ciphers such as differential and
linear cryptanalysis. We also demonstrated through hardware simulation that
mCrypton is well-suited for our target applications. Our simple hardware design
shows that it can be implemented with the complexity of about 2.4K to 4.1K
gates, depending on key sizes and capabilities (encryption-only, encryption and
decryption). Furthermore, we expect that a more compact 5 cycles/round archi-
tecture under development could considerably reduce the complexity (by about
30%). As another possible future work, we could perform validation of software
efficiency on the 8/16-bit processors used in typical sensor nodes.

References

1. S.Bono, M.Green, A. Stubblefield, A.Juels, A.Rubin and M.Szydlo, Security anal-
ysis of a cryptographically-enabled RFID device, In 14th USENIX Security Sym-
posium, Baltimore, Maryland, July-August 2005.

258 C.H. Lim and T. Korkishko

2. R.Campbell, J.A.-Muhtadi, P.Naldurg, G.Sampemane1 and M.D.Mickunas, To-
wards Security and Privacy for Pervasive Computing, In Software Security – The-
ories and Systems, LNCS 2609, Springer-Verlag, 2003, p.1-15.

3. M.Feldhofer, S.Dominikus and J.Wolkerstorfer, Strong authentication for RFID
systems using the AES algorithm, In Cryptographic Hardware and Embedded Sys-
tems - CHES 2004, LNCS 3156, Springer-Verlag, 2004, pp.357-370.

4. S.L.Garfinkel, A.Jeuls and R.Pappu, RFID privacy: An overview of problems and
proposed solutions, IEEE Security & Privacy, May/June 2005, pp.34-43.

5. C.Karlof, N.Sastary and D.Wagner, TinySec: A link layer security architecture for
wireless sensor networks, In ACM SenSys 2004, Nov. 3-5, 2004.

6. Y.W.Law and J.M.Doumen and P.H.Hartel, Benchmarking block ciphers for wire-
less sensor networks (Extended abstract), In 1st IEEE Int. Conf. on Mobile Ad-hoc
and Sensor Systems(MASS), Fort Lauderdale, Florida, Oct. 2004.

7. C.H.Lim, A revised version of CRYPTON: CRYPTON v1.0, In Fast Software
Encryption-FSE’99, LNCS 1636, Spinger-Verlag, 1999, pp.31-45

8. S.Morioka and A.Satoh, An Optimized S-Box Circuit Architecture for Low Power
AES Design, In Cryptographic Hardware and Embedded Systems - CHES 2002,
LNCS 2523, Springer-Verlag, 2003, pp.172-186.

9. A.Perrig, J.Stankovic and D.Wagner, Security in wireless sensor networks, Com-
mun. of ACM, 47(5), June 2004, pp.53-57.

10. J.Polastre, R.Szewczyk and D.Culler, Telos: enabling ultra-low power wireless re-
search, In Proceedings of the 4th Int. Conf. on Information Processing in Sensor
Networks: Special track on Platform Tools and Design Methods for Network Em-
bedded Sensors (IPSN/SPOTS), April 25-27, 2005.

11. F.Stajano and R.Anderson, The Resurrecting Duckling: Security Issues for Ubiq-
uitous Computing, IEEE Security & Privacy, April 2002, pp.22-26.

12. S.A.Weis, S.E.Sarma, R.L.Rivest and D.W.Engels, Security and privacy aspects
of low-cost radio frequency identification systems, Int. Conference on Security in
Pervasive Computing - SPC 2003, LNCS 2802, Springer-Verlag, 2003, pp.454-469.

Practical Modifications of Leadbitter et al.’s
Repeated-Bits Side-Channel Analysis

on (EC)DSA

Katsuyuki Takashima

Information Technology R&D Center,
Mitsubishi Electric Corporation,

5-1-1, Ofuna, Kamakura, Kanagawa 247-8501, Japan
takasima@iss.isl.melco.co.jp

Abstract. In this paper, we will report practical modifications of the
side-channel analysis to (EC)DSA [1, 2, 4, 31] that Leadbitter et al. have
proposed in [12]. To apply the analyses, we assume that the window
method is used in the exponentiation (EC scalar multiplication) calcu-
lation and the side-channel information described in Section 2 can be
collected. So far, the method in [12] haven’t been effective when q is 160
bit long and the window size w < 9. We show that the modified method
we propose in this paper is effective even when q is 160 bit long and
w = 4, that is, in the case of frequent implementation. First, we estimate
the window size w necessary for the proposed analyses (attacks) to suc-
ceed. Then by experiment of the new method, we show that private keys
of (EC)DSA can be obtained under the above assumptions, in practical
time and with sufficient success rate. The result raises the necessity of
countermeasures against the analyses (attacks) in the window method
based implementation of (EC)DSA.

Keywords: (EC)DSA, Side-channel analysis (attack), Window method,
Lattice basis reduction algorithm.

1 Introduction

Presently, it becomes more important to do countermeasures to various side-
channel analyses (SCA, side-channel attacks) [10, 11], and to study such anal-
ysis methods arouses much interest. In this paper, we will propose practical
modifications of SCA of Leadbitter et al. [12]. In addition, we will also describe
countermeasures against that attack.

In [12], the authors have proposed a SCA to the window method used in
the exponentiation (elliptic curve scalar multiplication) calculation in (EC)DSA
signatures. DSA and ECDSA are specified in several specification documents
[1, 2, 4, 31]. First in their method, they searched repetitions of window values sev-
eral times using side-channel information such as power consumption etc. Then
they constructed a lattice based on the side-channel information, and applied a
practical lattice basis reduction algorithm to it to obtain secret information.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 259–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 K. Takashima

Their method is similar to SCA methods in [8, 27, 20, 21, 19] etc. In the sce-
nario in [8, 27, 20, 21, 19], by knowing some part of secret information k, they
applied lattice basis reduction algorithm. The situation in these papers is dif-
ferent from that in [12] and this paper (See Section 2 and 5). The lattices used
are also different. We should note that the real fault attack on smart card using
lattice reduction has been succeeded in [19] recently. The result makes further
investigations of the method in [12] more important also.

The method in [12] isn’t effective when q is 160 bit long and the window
size w < 9, in particular in the frequent case that w = 4 (See Section 6.1). In
this paper, we propose two practical modifications of their method. Then we
will show that the methods are effective when q is 160 bit long and w = 4.
Using the heuristic estimate similar to that of [12], we predict that the success
rate of the proposed method is very high. In addition, by experiments using
random signature values, we verified that the proposed method succeeded with
sufficiently high success rate in several minutes. This result suggests that some
countermeasure is necessary when side-channel information in Section 2 can be
collected.

As described in [12], by modifying lattices appropriately, our method in Sec-
tion 5.1 can also be applied to (EC)DLP-based signatures other than (EC)DSA
(For example, to signatures in [5]). In addition, our attack strategy seems to be
applicable to a variety of window-based implementations, e.g., sliding window
method, width-w (T)NAF method, fractional window method etc. (See [7, 18,
25], for example). Also, it can be applied to both of “Right-to-Left” and “Left-
to-Right” exponentiations and EC scalar multiplications (See Section 5.1 also).

In [24], another attack on window-based method has been proposed. However,
the method is different from our methods in the respect that their method uses
statistical processing.

In this paper, we won’t discuss the collection phase of side-channel information
further than that in Section 2.

This paper is organized as follows. In Section 2, we describe side-channel in-
formation used in lattice based SCA in [12] and this paper. Collection methods
of them are also described there. Next, in Section 3, we briefly review the target
signature algorithms DSA and ECDSA. In Section 4, lattice basis reduction al-
gorithms (LLL and BKZ) used in experiments in this paper are briefly reviewed.
In Section 5, we describe analysis method in [12] and our proposed two methods.
In Section 6, we show the effectiveness of the proposed methods by experimen-
tation. Finally, in Section 7, countermeasures against the proposed methods are
described.

2 Side Channel Information Used in Lattice Based SCA

In [12] and this paper, by detecting a repeated reading of some window values,
we use the corresponding repetition of bit patterns (See Section 5). For example,
as described in [12], such continuous readings can be detected by the following
two methods:

Practical Modifications of Leadbitter et al.’s Repeated-Bits SCA 261

The first one is that by detecting reuses of data on cache memory using
timing information etc. This methodology was already pointed out in [10]. Such
a method can be used when reading values from a precomputation table. In
[32] etc., the method has been applied to real implementations. Recently, in
[26], a cache-based attack on RSA was applied to processors with simultaneous
multithreading.

The second one is that by collecting side-channel information such as power
consumption data etc. for address-bit accesses. In [9], by processing such data
statistically, a method to deduce some secret information (ADPA : Address-bit
DPA) was described. Countermeasures against such attacks were also described.

For countermeasures against the above attacks, see Section 7. In addition,
it seems interesting to investigate to make use of fault analysis effectively as
in [19].

3 DSA (ECDSA)

In this section, we will briefly review signature algorithms DSA and ECDSA.
First, we will describe a map f called projection in [5].

For DSA, primes p and q are set s.t. q|p − 1, and g (∈ F∗
p) is an element of

order q in F∗
p. For G (:= 〈g〉 ⊂ F∗

p), a map f : G→ Fq is defined by h �→ h mod q.
For ECDSA, we need a cyclic subgroup G (⊂ E(Fp)) s.t. q := �G is a large

prime. For such G, a map f : G → Fq is defined by P �→ xP mod q (where xP

is the x-coordinate of P).1

In the following, DSA is explained using the above f . ECDSA is defined
similarly. Let H be a hash function. A signature (r, s) for a message m using a
private key α is defined as follows using an ephemeral key k.

r = f(gk), s = (H(m) + rα)/k mod q (1)

Here, we note that when we know k, private key α can be easily calculated by
using the second equation in (1) and publicly known informations. By that, in
the following analysis, our aim is to obtain (at least one) k from several pairs of
a message and a signature.

4 Lattice Basis Reduction Algorithm

In this section, we will explain the LLL algorithm [13] and the block Korkine-
Zolotareff (BKZ) algorithm [28] briefly. In the following sections, they are used
for an approximation algorithm of the shortest vector in a lattice L.

In this paper, we consider only a lattice L(⊂ Rd) of maximal rank. For a lattice
L, L = L(M) means that a matrix M consists of column vectors representing its

1 Here, to avoid notational confusion, we described it for prime-field elliptic curves. Of
course, the results in this paper are also effective when using composite-field elliptic
curves in ECDSA.

262 K. Takashima

basis. Additionally, ||·||means the Euclidean norm, and λ1(L) is minb(�=0)∈L ||b||.
For a L = L(M), Δ(L) := | det(M)|.

The LLL algorithm has a time-accuracy trade-off parameter δ (1/4 < δ < 1).
For the definition, see [15] p.33, for example. It is known that for an obtained
basis (b1, . . . , bd) by the LLL algorithm,

||b1|| ≤ (2/
√

4δ − 1)d−1Δ(L)1/d . (2)

This gives a theoretical upper bound for ||b1||. In fact, it is known that we can
obtain a shorter vector than that expected by the equation (2).

By using the BKZ algorithm [28], we can obtain a shorter vector that can
not be obtained by the LLL algorithm. The BKZ algorithm is parametrized by
a block-size parameter κ (2 ≤ κ ≤ d), and when κ = 2, it equals to the LLL
algorithm. As a corresponding estimate to the inequality (2), the following (3)
is known for a BKZ basis (b1, . . . , bd) defined in [28, 29].

||b1|| ≤ γ
d−1
κ−1
κ λ1(L) ≤ γ

d−1
κ−1
κ

√
γdΔ(L)1/d . (3)

Here, γd(and γκ) is called Hermite constant, and has a property that 1
2πe ≤

lim infd→∞ γd

d ≤ lim supd→∞
γd

d ≤ 1
πe . However, the real BKZ algorithm has a

parameter δ similar to the LLL algorithm, so output an “approximate” BKZ
basis. Therefore, in general, the outputted basis doesn’t have to satisfy the in-
equality (3). As the block-size κ get larger, we can obtain a “shorter” vector
compared to that by the LLL algorithm as is seen from the estimation (3),
however, the computation time gets longer.

5 SCA Under Repeated Bits Assumption

In this section, we will describe methods to get private key information efficiently
when side-channel information in Section 2 is available. First, in Section 5.1, a
method in [12] is described, and two proposed methods, that are generalizations
of that in [12], are given in Section 5.2 and 5.3. By applying an estimate method
to them, we show that they can be applied to DSA (or ECDSA) of the practical
parameter size.

5.1 SCA of Leadbitter et al. [12]

Let l be the bitlength of the modulus q, and w be the window size. By using
side-channel information in Section 2, we collect the following form k = ki (i =
0, . . . , n) where n ≥ 30. For some t (≥ 0), ki has a form xi||yi||yi||vi (vi < 2t, xi <
2l−t−2w, yi < 2w). Using these ki and corresponding ri, si etc., we construct
some lattice L. For that lattice, search for a short vector leads to disclosure of
all the ki. In fact, for the sake of simplicity, the case that t = 0 (vi = ∅) is only
considered in [12]. Also for the argument in this paper, considering that case is
sufficient. Therefore, we consider only

Practical Modifications of Leadbitter et al.’s Repeated-Bits SCA 263

ki = xi22w + yi(1 + 2w) (xi < 2l−2w, yi < 2w) .2 (4)

In the following, we assume that the exponentiation (or scalar multiplication)
is executed as Right-to-Left. Then we use repetitions of bit patterns in the LSB
part as above. Also for the Left-to-Right execution, if we can detect repetitions,
the following arguments can be applied by modifying the lattice appropriately.

According to the experiment in [12], when w ≥ 10, the analysis is suceeded in
high rate by collecting ki of the form (4) more than or equal to 40 (See Table 1
in [12]).

Even for the case that w = 10 and n ≈ 100, 2w ∗ 100 (< 217) exponentiations
(or scalar multiplications) are enough on average to obtain n ki’s satisfying the
pattern (4) under the assumption of uniform appearance of bits in k.

The following equations are deduced from simultaneous equations si =(H(mi)
+riα)k−1

i mod q (i = 0, . . . , n).

r0siki−ris0k0 = r0H(mi)−riH(m0) mod q i=1, . . . ,n. (5)

These equations are rewritten as yi = ai + bix0 + cixi + diy0 +λiq (i = 1, . . . , n)
for W := (2w + 1)−1 mod q, N := 22w,

ai := Ws−1
i (H(mi)−H(m0)rir

−1
0) mod q ,

bi := NWs−1
i s0rir

−1
0 mod q ,

c := −NW mod q ,
di := s−1

i s0rir
−1
0 mod q ,

(6)

and some λi. In general, the solution (xi, yi) in formulas (4) is small compared
to coefficients ai, bi, c, di (i = 1, . . . , n). That is why we can reveal (xi, yi) by
using a lattice basis reduction algorithm.

The following matrix M is defined using ai, bi, c, di (i = 1, . . . , n) in formulas
(6). L (:= L(M)) is a d (:= 2n + 3)-dimensional lattice generated by column
vectors of M .

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0
...

...
. . .

... 0
0 0 0 ε 0
0 0 0 0 θ 0 0

θa1 θb1 θc 0 θd1 θq 0
...

...
. . .

...
. . .

θan θbn 0 θc θdn 0 θq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

2 In [12], 22w in the formula (4) is written as 2l−2w . However, it seems a mistake in
writing. Also, elements θai, θbi, θc, θdi (i = 1, . . . , n) in lower n rows of the matrix
(7) are ai, bi, c, di (i = 1, . . . , n) in [12], respectively. The description seems also a
mistake because the vector z is not in L described in [12].

264 K. Takashima

Here, integers β, ε, and θ are set so that ε ≈ 22w−lβ and θ ≈ 2−wβ for a lattice
basis reduction algorithm to run effectively (See Section 4 of [12]).3

For x = t(1, x0, x1, . . . , xn, y0, λ1, . . . , λn), the following point z = M · x is
in L.2

z = t(β, εx0, εx1, . . . , εxn, θy0, θy1, . . . , θyn) . (8)

The ratio of Δ(L)1/d and ||z|| is used as follows for an estimate of success of
the analysis in [12] (See the formulas (2) and (3)). They consider if

||z|| ≤ Δ(L)1/d , (9)

the success rate that the solution z can be obtained is high. We call this heuristic
condition used in [12] “condition A,” and is used also in this paper in Section
5.2 and 5.3.

In [12], it is deduced that when n ≈ 100,

w ≥ 9.28 (10)

is a sufficient condition for satisfying the condition A (9). See Section 6.1 for the
validity of the condition (10) also.

5.2 SCA Using General Window Value Repetition Frequency u

We consider the following method using general repetition number u (i.e. u ≥ 2)
to succeed in the case that q is 160 bit long and window-size w is 4. The target
ki is given by

xi|| yi|| · · · ||yi︸ ︷︷ ︸
u times

(xi < 2l−uw, yi < 2w) . (11)

That is, ki = xi2uw + yi

∑u−1
j=0 2wj . In the case that u = 2, it is the pattern in

Section 5.1.
Similar to Section 5.1, under the assumption of uniform distribution of bits

of k, we require about 2(u−1)wn exponentiations (or scalar multiplications) to
collect n ki’s such as the formula (11) on average. The number is 28 ∗100 (< 215)
in the case that w = 4, n ≈ 100, and u = 3. Therefore, we can collect the
necessary data in practical time.

For this SCA using general u, we modify the lattice L in Section 5.1 replacing
N := 2uw, W := (

∑u−1
j=0 2wj)−1 mod q instead of N, W in the formulas (6).

Parameters β, ε, and θ are chosen so that ε = εu = 2uw−lβ, θ = 2−wβ.
We also estimate the successful w for the proposed method using the condition

A (9). First, Δ(L)2 and ||z||2 are evaluated as follows, respectively.

3 We use a different notation from that in [12]. ε and θ in this paper are written as γ
and δ in [12], respectively, to avoid confusion with notations in Section 4 and 6.

Practical Modifications of Leadbitter et al.’s Repeated-Bits SCA 265

Δ(L)2 = βεn+1θn+1qn

≈ β2n+32(n+1)(uw−l−w)2ln

= β2n+32(u−1)(n+1)w−l ,
(12)

||z||2 = β2 +
∑n

i=0(ε
2x2

i + θ2y2
i)

≤ β2(2n + 3) .

From these estimates, we can see that the next condition (13) is sufficient for
the condition A (9).

√
2n + 3 ≤ 2((u−1)(n+1)w−l)/(2n+3) . (13)

When n ≈ 100, considering the formula (13) as an inequality in (u−1)w, we get

w ≥ 9.28/(u− 1) . (14)

Thus, for u = 3, we obtain an inequality

w ≥ 9.28/2 = 4.64 .

That is, we show the applicability of the proposed method to the practical case
that q is 160 bit long and w is 4. For the corresponding experimentation result,
see Section 6.2. Also, for u = 4, the inequality (14) implies the applicability to
the case that w = 3 (when q is 160 bit long).

5.3 SCA Using Multiple u’s

When we detect n u-time repetitions of the same window value as the formula
(11), n/2w samples are (u + 1)-time repetitions on average. Using these data
effectively, we can construct a lattice L so that the norm ||z|| is smaller than
that for the previous lattice compared to Δ(L).

We set that k0 in the equations (5) has the largest u0 among all collected data.
In addition, let nu be the number of u-time repetitions (i.e. n =

∑
u nu). Then

the constants ε(= εu)’s for several u’s are different from each other. Therefore,
the equation (12) is modified to

Δ(L)2 ≈ βθn+1qnε
nu0+1
u0

∏
u�=u0

εnu
u

= β2n+32−(n+1)w+(u0w−l)(nu0+1)∏
u�=u0

2(uw−l)nu2ln

= β2n+32−(n+1)w+(u0w−l)(nu0+1)+ u�=u0
((uw−l)nu)+ln .

(15)

For example, we consider the case that n3 ≈ 15n/16 = 93.75, n4 ≈ n/16 = 6.25,
and other nu’s are 0 (i.e. u0 = 4, n = 100, and n = n3 + n4). Thus the formula
(15) is evaluated as

Δ(L)2 =β2n+32−(n+1)w+(4w−l)(n4+1)+(3w−l)n3+ln

≈ β2n+32n(−w+1/16(4w−l)+15/16(3w−l)+l)+3w−l .

Consequently, we get the following condition as a sufficient condition for the
condition A (9) similar to the case in the previous subsection.

266 K. Takashima

√
2n + 3 ≤
2(n(−w+1/16(4w−l)+15/16(3w−l)+l)+3w−l)/(2n+3)

= 2((837/4)w−160)/203 .

From this, we obtain w ≥ 4.482... We see that the effective window size for the
method in this subsection is smaller than that in the previous subsection.

6 Experimentation Results

After mentioning the experimentation results in [12] in Section 6.1, we will de-
scribe our experimentation results for the method proposed in Section 5.2 in
Section 6.2.

6.1 Experimentation Results of Leadbitter et al. [12]

Leadbitter et al. implemented their method (in Section 5.1) using 50 Linux
workstations (2 GHz Pentium 4, 512 MB RAM for each). Then they have verified
the validity of the estimate (the formula (10)) of effective window size for 160
bit q for their method based on the condition A (9).

The result was summarized in Table 1 in [12]. The success rates were tabulated
through 100 experimentations for each n and w.

Average times (minutes) for one execution were also given. Although there
was no detailed description for the way of the experimentation, it seems the
same as the way in Section 6.2 we adopted.

They used the floating-point arithmetic Schnorr-Euchner algorithm [30] (with
the “deep insertion” method) as a first lattice basis reduction algorithm. To ob-
tain shorter vectors, after executing the Schnorr-Euchner algorithm, they applied
the so-called integral LLL algorithm (de Weger method [34]).

6.2 Experimentation Results for the Method in Section 5.2

We executed the similar experimentation to that in [12] for the method in
Section 5.2 (u = 3). On a PC (1.3 GHz Pentium M, 0.98 GB RAM, Win-
dows XP), we verified the effectivity of our proposed method using NTL [23]
implementation (See Table 2).

We describe the experimentation method in the following. First, we generate
random ri, hi(= H(mi)), xi and yi s.t. xi < 2l−uw and yi < 2w (i = 0, . . . , n).

Table 1. Options for NTL lattice basis reduction algorithm

main algorithm BKZ
flag of floating-point arithmetic QP

δ 0.99
diagonalization (classical) Gram-Schmidt

Practical Modifications of Leadbitter et al.’s Repeated-Bits SCA 267

Table 2. Experimentation results for the method in Sec. 5.2 (w = 4, l = 160, u =
3, ε = 1000)

n(≈ of sig.) block size κ of suc. suc. rate ave. time (m.) total time (m.)
10 5 8.3% 0.41 24.50

30 20 28 46.7% 0.60 36.06
30 54 90.0% 3.35 201.14
10 26 43.3% 0.85 51.22

40 20 55 91.6% 1.06 63.54
30 60 100.0% 2.66 159.68
10 60 100.0% 1.67 99.9650
20 60 100.0% 1.89 113.59
10 60 100.0% 3.04 182.2960
20 60 100.0% 3.94 236.57

Using the second equation of (1), si are calculated. Based on (6), ai, bi, c, and
di are calculated, and the corresponding lattice L(M) is constructed. Finally,
we run a lattice basis reduction algorithm with the specification (or parameters)
as in Table 1.

Here, parameters δ (in Table 1) and κ (in Table 2) were explained in Section 4.
See the NTL manual for the details of “flag of floating-point arithmetic” and
“diagonalization.”

As is seen in Table 1 in [12], the execution time of basis reduction in [12] takes
106 minutes even when n = 40. Therefore, we don’t adopt the time-consuming
integral LLL algorithm. As the use of the BKZ algorithm is recommended in
the NTL manual instead of the use of “deep insertion,” we follow it as in
Table 1. For the size of numbers in this experimentation, the BKZ function in
NTL library execute the ordinary LLL algorithm at first, and for appropriately
small matrix entries obtained, the BKZ algorithm is executed.

By the expression (8), the desired z can be calculated using known xi, yi (and
β, ε, θ) in the experimentation. Therefore, we count the case that there exists
an index j s.t. bj or −bj obtained by the basis reduction and z are equal as a
success, and tabulate the success rates in Table 2.

For parameters w = 4, l = 160, u = 3, ε = 1000 (β = 2l−nwε, θ = 2l−(n+1)wε),
we repeat the experimentation 60 times. Hence, the success rates are “� of suc-
cess” / 60 ∗100%. In the “total time” column, the total times of the 60 trials are
described. Data in “average time” are “total time” / 60.

By the results in Table 2, we can see the effectiveness and practical running
time for the method in Section 5.2 for the widely-used parameters q and w.

7 Countermeasures

In this section, we give 3 (possible) countermeasures against the proposed anal-
ysis methods. The method in Section 7.1 is suitable for a group of points on an
elliptic curve (EC) because projective (Jacobian) coordinates are available. Also,

268 K. Takashima

that in Section 7.2 is suitable for EC because the inverse calculation of points
on EC is easy. Both methods are effective for the proposed analyses in this pa-
per. However, the countermeasure in Section 7.3 can not be applied directly.
Therefore, we should modify the method appropriately.

7.1 Table Randomization Renewal

This is a standard countermeasure adopted in [16, 24] etc. For each reading of
an element in a precomputed table, the value is randomized so that the reuse of
the values on cache-memory is prevented.

7.2 Möller’s Scalar Multiplication

Using the countermeasure in Section 7.1, the computational amount increases
as randomizations are done for each reading to a precomputed table. Hence, to
avoid such increases, Möller implemented a modification of Yao’s exponentiation
calculation (scalar multiplication) method [33] in [17]. That realizes “uniform
calculation process” and “randomization of data” (For the details, see [17]. For
the Yao’s method, see [3, 14] also.).

For 160 and 256 bit EC cases, Möller has shown in [17] that his method is
superior than the method in Section 7.1 when w ≤ 4 w.r.t. comparison of time
complexity.

7.3 Address-Bit Randomization

This is the method to mask address-bits by some random values so that repeti-
tions of reading the same value get difficult to be detected. However, as is already
noticed in [12], direct application of that in [9] doesn’t make meaningful effects
because we must deal with the correlations of address-bits in one exponentiation
(scalar multiplication) execution.

8 Conclusions

In this paper, we proposed generalizations of the side-channel analysis method to
(EC)DSA in [12]. They assumed collections of side-channel informations for rep-
etitions of window values. Then we have shown our proposed method is effective
for the practical situations (e.g. 160 bit q and w = 4). For such situations, the
previous method in [12] is not effective. The effectiveness is shown by the heuris-
tic estimates used in [12] and by simulation experiments using random signature
values. In the experimentation, a private key has been revealed in practical time.

By this, the necessity of implementing countermeasures as in Section 7 get
higher when the window method is used in (EC)DSA.

Acknowledgement. We thank the anonymous refrees for their useful com-
ments.

Practical Modifications of Leadbitter et al.’s Repeated-Bits SCA 269

References

1. ANSI X 9.30 : 1, “American National Standard for Financial Services - Public Key
Cryptography for the Financial Services Industry : Part 1 : The Digital Signature
Algorithm (DSA),” American National Standard Institute, 1997.

2. ANSI X 9.62, “American National Standard for Financial Services - Public Key
Cryptography for the Financial Services Industry : The Elliptic Curve Digital Sig-
nature Algorithm (ECDSA),” American National Standard Institute, 1998.

3. E.F. Brickell, D.M. Gordon, K.S. McCurley, and D.B. Wilson, “Fast exponentiation
with precomputation,” Eurocrypt ’92, LNCS 658, 200–207, Springer Verlag, 1993.

4. FIPS 186-2, “Digital Signature Standard (DSS),” Federal Information Processing
Standards Publication 186-2, U.S. Department of Commerce/ N.I.S.T., January
27 2000.

5. L. Granboulan, “PECDSA : How to build a DL-based digital signa-
ture scheme with the best proven security,” NESSIE Report, available at
https://www.cosic.esat.kuleuven.ac.be/nessie/reports/.

6. P.M. Gruber and C.G. Lekkerkerker, Geometry of numbers, North-Holland, 1987.
7. D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,

Springer Verlag, 2004.
8. N. Howgrave-Graham and N.P. Smart, “Lattice attacks on digital signature

schemes,” Designs, Codes and Cryptography, 23, 283–290, 2001.
9. K. Itoh, T. Izu, and M. Takenaka, “A practical countermeasure against address-

bit differential power analysis,” CHES 2003, LNCS 2779, 382–396, Springer Verlag,
2003.

10. P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” CRYPTO ’96, LNCS 1109, 104–113, Springer Verlag, 1996.

11. P.C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” CRYPTO ’99,
LNCS 1666, 388–397, Springer Verlag, 1999.

12. P.J. Leadbitter, D. Page, and N. Smart, “Attacking DSA under a repeated bits
assumption,” CHES 2004, LNCS 3156, 428–440, Springer Verlag, 2004.

13. A.K. Lenstra, H.W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Math. Ann., 261, 515–534, 1982.

14. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

15. D. Micciancio and S. Goldwasser, Complexity of lattice problems : A cryptographic
perspectives, Kluwer Academic Publishers, 2002.

16. B. Möller, “Securing elliptic curve point multiplication against side-channel at-
tacks,” ISC 2001, LNCS 2200, 324–334, Springer Verlag, 2001. “addendum: Effi-
ciency improvement,” available at http://bmoeller.de/.

17. B. Möller, “Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks,” ISC 2002, LNCS 2433, 402–413, Springer Verlag,
2002.

18. B. Möller, “Improved techniques for fast exponentiation,” ICISC 2002, LNCS 2587,
298–312, Springer Verlag, 2003.

19. D. Naccache, P.Q. Nguyen, M. Tunstall, and C. Whelan, “Experimenting with
faults, lattices and the DSA,” PKC ’05, LNCS 3386, 16–28, Springer Verlag, 2005.

20. P.Q. Nguyen and I.E. Shparlinski, “The insecurity of the digital signature algorithm
with partially known nonces,” J. Cryptology, 15, 151–176, 2002.

21. P.Q. Nguyen and I.E. Shparlinski, “The insecurity of the elliptic curve digital
signature algorithm with partially known nonces,” Design, Codes and Cryptology,
30 (2), 201–217, 2003.

270 K. Takashima

22. P.Q. Nguyen and J. Stern, “The two faces of lattices in cryptology,” CaLC 01,
LNCS 2146, 146–180, Springer Verlag, 2001.

23. NTL, available at http://shoup.net/ntl/.
24. K. Okeya and K. Sakurai, “A second-order DPA attack breaks a window-method

based countermeasure against side channel attacks,” ISC 2002, LNCS 2433, 389–
401, Springer Verlag, 2002.

25. K. Okeya and T. Takagi, “SCA-resistant and fast elliptic scalar multiplication
based on wNAF,” IEICE Trans. Fundamental, E87-A, No.1, 2004.

26. C. Percival, “Cache missing for fun and profit,” BSDCan 2005, Ottawa, 2005. avail-
able at http://www.daemonology.net/hyperthreading-considered-harmful/ .

27. T. Römer and J.-P. Seifert, “Information leakage attacks against smart card imple-
mentations of the elliptic curve digital signature algorithm,” E-smart 2001, LNCS
2140, 211–219, Springer Verlag, 2001.

28. C.-P. Schnorr, “A hierarchy of polynomial time lattice basis reduction algorithms,”
Theor. Comput. Sci., 53, No.2-3, 201–224, 1987.

29. C.-P. Schnorr, “Block Korkin-Zolotarev bases and successive minima,” Combina-
torics, Probability and Computing, 3, 507–533, 1994.

30. C.-P. Schnorr and M. Euchner “Lattice basis reduction : Improved practical al-
gorithms and solving subset sum problems,” Proc. Fundamentals of Computation
Theory, LNCS 529, 68–85, Springer Verlag, 1991.

31. Standards for Efficient Cryptography, “SEC1 : Elliptic Curve Cryptography,” ver-
sion 1.0, 20 September 2000.

32. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, “Cryptanalysis of
DES implemented on computers with cache,” CHES 2003, LNCS 2779, 62–76,
Springer Verlag, 2003.

33. A.C.-C. Yao, “On the evaluation of powers,” SIAM J. Comput., 5, 100–103, 1976.
34. B.M.M. de Weger, “Solving exponential diophantine equations using lattice basis

reduction algorithms,” J. Number Theory, 26, 325–367, 1987.

A DPA Countermeasure by Randomized
Frobenius Decomposition

Tae-Jun Park1, Mun-Kyu Lee2, Dowon Hong1, and Kyoil Chung1

1 Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

{papswann, dwhong, kyoil}@etri.re.kr
2 School of Computer Science and Engineering,

Inha University, Incheon 402-751, Korea
mklee@inha.ac.kr

Abstract. There have been various methods to prevent DPA (Differ-
ential Power Analysis) on elliptic curve cryptosystems. As for the curves
with efficient endomorphisms, Hasan suggested several countermeasures
on anomalous binary curves, and Ciet, Quisquater and Sica proposed a
countermeasure on GLV curves. Ciet et al.’s method is based on random
decomposition of a scalar, and it is a two-dimensional generalization of
Coron’s method. Hasan’s and Ciet et al.’s countermeasures are applied
only to a small class of elliptic curves.

In this paper, we enlarge the class of DPA-resistant curves by propos-
ing a DPA countermeasure applicable to any curve where the Frobenius
expansion method can be used. Our analysis shows that our counter-
measure can produce a probability of collision around O(2−20) with only
15.4–34.0% extra computation for scalar multiplications on various prac-
tical settings.

Keywords: Elliptic curve, scalar multiplication, Frobenius expansion,
GLV decomposition, DPA.

1 Introduction

Since Koblitz [1] and Miller [2] proposed the use of elliptic curves in cryptogra-
phy, an extensive research has been done on the efficiency and security of elliptic
curve cryptosystems.

The most time-consuming operation in elliptic curve cryptosystems is a scalar
multiplication of an elliptic curve point. One of the well-known techniques to
speed up the scalar multiplication is to use Frobenius expansions. Koblitz [3]
suggested the use of Frobenius expansions and anomalous elliptic curves. Müller
[4] and Cheon et al. [5] extended this idea to give the Frobenius expansion
over small fields of characteristic two. Smart [6] generalized Müller’s idea to
elliptic curves over fields with small odd characteristic. Gallant, Lambert and
Vanstone (GLV) [7] suggested that efficiently computable endomorphisms other
than Frobenius endomorphisms can be used for fast scalar multiplications. Fur-
ther research on the improvement of their methods has been done by Y.-H. Park

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 271–282, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

272 T.-J. Park et al.

et al. [8] and Ciet et al. [9, 10]. Recently, T.J. Park et al. [11, 12] presented alter-
native Frobenius expansion algorithms combined with other efficient maps such
as the GLV endomorphisms.

Power analysis attack, first introduced by Kocher et al. [13], is a powerful tech-
nique allowing the recover of the secret information by monitoring power signals.
There are two kinds of power analysis attacks; SPA (simple power analysis) and
DPA (differential power analysis), where DPA is believed to be more effective
than SPA. Various research has been done to prevent SPA and DPA. Substan-
tially, the countermeasures against SPA are to make the power consumption
of unit operations independent of the secret key bits, and the countermeasures
against DPA are to randomize computation so that the same operations produce
different power signals.

As for the power analysis attacks on elliptic curves, Coron [14] first showed
that the naive implementations of ECC are also highly vulnerable to SPA and
DPA. Various methods [14, 15, 16, 17, 18, 19, 20] have been proposed to prevent
this attack on elliptic curves. Especially, Hasan [19] suggested several counter-
measures against SPA and DPA on Koblitz curves (a.k.a. anomalous binary
curves), and Ciet et al. [20] proposed randomizing the GLV decomposition
method to prevent DPA on GLV curves. Ciet et al.’s method can be viewed
as a two dimensional generalization of Coron’s [14]. Note that Hasan’s method
is applied only to anomalous binary curves, and Ciet et al.’s method is applied
only to GLV curves.

In this paper we propose a new countermeasure against DPA, which is ap-
plicable to any curve where the Frobenius expansion method can be used. Our
countermeasure is based on random decomposition of a scalar, which is inspired
by the randomized GLV decomposition in [20]. We also analyze the relation be-
tween immunity to DPA and computational overheads. According to our anal-
ysis, the new countermeasure can produce a collision probability around 2−20

with only 15.4–34.0% extra computation for scalar multiplications on curves over
various fields.

2 Preliminaries

2.1 Ordinary Frobenius Expansion Methods

In this section, we briefly explain the previous Frobenius expansion methods.
Let q be a prime power. If q is of the form 2m or 3m, then an nonsupersingular
elliptic curve over Fq is given by an equation of the form

E : y2 + xy = x3 + a2x
2 + a6,

where a2, a6 ∈ Fq and a6 �= 0. Otherwise, an elliptic curve over Fq is given by
an equation of the form

E : y2 = x3 + ax + b,

where a, b ∈ Fq.

A DPA Countermeasure by Randomized Frobenius Decomposition 273

The Frobenius endomorphism of E is given by

φ : E(F̄q) −→ E(F̄q)
(x, y) �−→ (xq, yq).

where F̄q is the algebraic closure of Fq. The Frobenius endomorphism satisfies
the following minimal polynomial,

φ2 − τφ + q = 0 (1)

where |τ | ≤ 2
√

q. Note that even if we consider Fqn -rational points on E, i.e.,
E(Fqn), the properties of the Frobenius endomorphism on E(Fq) holds.

To avoid the MOV attack [21], we have to use nonsupersingular elliptic curves.
The endomorphism ring of a nonsupersingular elliptic curve E is an order in
the imaginary quadratic field Q(

√
τ2 − 4q). Obviously, the ring Z[φ] = {a +

bφ | a, b ∈ Z} is a subring of the endomorphism ring of E.
Müller [4] proposed a Frobenius expansion method by iterating divisions for

fast scalar multiplication on elliptic curves over small fields of characteristic two.
Smart [6] proposed a similar method on small fields of odd characteristic. The
following lemma proves the existence of a division by φ with remainder in the
ring Z[φ]. We give a proof which is a little bit different from the original ones.

Lemma 1. [4, 6] Suppose that q be even (respectively, odd) prime power. Let
s ∈ Z[φ]. There exists an integer r ∈ Z, −q/2 ≤ r ≤ q/2 (respectively, −(q +
1)/2 ≤ r ≤ (q + 1)/2), and an element t ∈ Z[φ] such that

s = t · φ + r.

Proof. Let s = s1 + s2φ with s1, s2 ∈ Z. We will choose integers t1, t2, r ∈ Z,
such that

s1 + s2φ = (t1 + t2φ) · φ + r.

Using (1), we transform the right-hand side of this equation into

(t1 + t2φ) · φ + r = t1φ + t2(τφ − q) + r

= (−t2q + r) + (t1 + τt2) · φ.

Comparing coefficients, we get s1 = −t2q + r. Let t2 = −�s1/q�, where �x� is
the nearest integer to x. We can compute t1 = s2 − τt2 and r = s1 + t2q.

By iterating the process of divisions by φ with remainder, one can expand

s =
l∑

j=0

rj · φj ,

where rj∈{−q/2, . . . , q/2} (rj ∈{−(q+1)/2, . . . , (q+1)/2}) with l=�2 logq ‖s‖�
+3 (l = �2 logq 2‖s‖�+ 3) and ‖s‖ is the Euclidean length of s.

274 T.-J. Park et al.

Ñ

i Ñ

�

- q+tf

f

-q+ t+ 1 f

s=s1+ s2f s1-r + s2f

Fig. 1. Choosing smaller integer r in L1

From a different point of view, the proof of Lemma 1 can be reconstructed as
follows. We remark that its main idea comes from [11, 12]. Let L be the lattice
generated by 1 and φ. Let’s consider the elements in L which can be divided by
φ. Such an element is of the form φ · (l + mφ) and

φ · (l + mφ) = lφ + mφ2

= lφ + m(−q + τφ)

by (1). Thus, the set of all elements which can be divided by φ is the lattice
generated by φ and φ2 = −q + τφ. We denote this lattice by L1 = [φ,−q + τφ].

We want to divide s = s1 + s2φ ∈ L by φ with remainder. If s1 + s2φ is in
L1, then s1 + s2φ is divided by φ, i.e. s1 + s2φ = (t1 + t2φ) · φ. If s1 + s2φ is not
in L1, then we move s1 + s2φ horizontally left or right to s1 − r + s2φ ∈ L1 by
choosing smaller r ∈ Z. See Fig. 1. Since s1 − r + s2φ is in L1,

s1 − r + s2φ = (t1 + t2φ) · φ,

s1 + s2φ = (t1 + t2φ) · φ + r.

2.2 DPA Against Scalar Multiplication

In this section, we explain Coron’s DPA attack [14] against ECC scalar multi-
plication. DPA (differential power analysis) uses the correlation between power
consumption and specific key-dependent bits which appear at known steps of a
certain computation. Now we briefly describe how Coron’s attack [14] uses this
idea to recover the secret k from h scalar multiplications kPi (1 ≤ i ≤ h) that
involve the fixed k and distinct points Pi. Let k =

∑l
j=0 kj2j (kj ∈ {0, 1}), and

assume kl = 1 without loss of generality.
First, consider the case that the scalar multiplications are done using the

conventional left-to-right double-and-add algorithm. Then the computation se-
quence of kPi will be

A DPA Countermeasure by Randomized Frobenius Decomposition 275

Pi → 2Pi → 3Pi → 6Pi → · · · if kl−1 = 1,

or
Pi → 2Pi → 4Pi → · · · if kl−1 = 0.

Hence, if kl−1 = 0, 4Pi is computed in the above sequence, and power consump-
tion is correlated with any specific bit si in the binary representation of point
4Pi. In other words, the correlation function

g(t) =
∑

i=1,...,h|si=1 Ci(t)−
∑

i=1,...,h|si=0 Ci(t),

where Ci(t) is the power consumption of kPi at time t, has a non-negligible
value at some point t = t′. (t′ is the moment when si is being dealt.) On the
other hand, if kl−1 = 1, g(t) should have negligible values at any t since kPi and
4Pi have no relation. Thus an attacker can distinguish between kl−1 = 0 and
kl−1 = 1 by computing the correlation function from many scalar multiplications
with a fixed k. After recovering kl−1 using the above procedure, the remaining
bits of k can be recursively recovered in the same way.

It is easy to see that the above attack can be extended to any scalar multi-
plication algorithm that uses a fixed addition-subtraction chain

P → a1P → a2P → · · · → kP,

for a fixed k, regardless of P . The attacker can recover k by successively guessing
ai. At step i ≥ 1, he constructs the set Ai of all possible ai, and for each
a′

i ∈ Ai computes the correlation function between the point a′
iP and power

consumption. Note that the Frobenius expansion-based scalar multiplications,
which we are interested in, are vulnerable to this kind of attack.

We remark that the vulnerability results from the fact that the same k is
used many times. Therefore, an obvious solution is to use different k′ such that
k′P = kP , instead of k. Most of the countermeasures against DPA have adopted
this approach, and our countermeasure is also based on this idea.

3 DPA Countermeasure by Randomized Frobenius
Decomposition

In this section we propose a random decomposition method and show how it can
be used for a countermeasure against DPA on any curve where the Frobenius
expansion is used. Actually, our work is inspired by the countermeasure in [20]
which randomizes the GLV decomposition.

3.1 Randomized GLV Method

Now, we briefly review the GLV decomposition method (see [7, 10]). Let E be
an elliptic curve over a prime field Fq. Assume that there exists an efficiently
computable endomorphism Ψ on E whose minimal polynomial is X2+rX+s = 0.

276 T.-J. Park et al.

For P ∈ E(Fq) of prime order n, Ψ(P) = λP for some λ ∈ [1, n− 1] where λ is
a root of X2 + rX + s ≡ 0 mod n. The GLV method decomposes a scalar k as
k ≡ k1 + k2λ (mod n) where k1, k2 = O(

√
n).

In order to find such a decomposition k ≡ k1 + k2λ (mod n), Gallant et al.
[7] introduced a way to use two linearly independent small vectors v1, v2 in the
kernel of the homomorphism f : Z×Z → Z/n defined by f(i, j) = i+jλ (mod n).
Let V be a lattice generated by v1, v2. The lattice V consists of the kernel of the
homomorphism f . The goal is to find the nearest lattice point of V to k. We can
decompose (k, 0) = av1 + bv2 for a, b ∈ Q, then (k, 0) = �a�v1 + �b�v2 + (k1, k2).
Since f(v1) = f(v2) = 0, kP = (k1 + k2λ)P .

We show DPA countermeasure for GLV method in [20]. Let A =
(

a b
c d

)
be a random 2 × 2 matrix and ad − bc �= 0. The domain Z × Z of the GLV
homomorphism f can be regarded as a lattice with the basis {1, Ψ} and L =
A(Z×Z) is obviously a random sublattice of Z×Z with the basis {Ψ0, Ψ1} where
Ψ0 = a + cΨ and Ψ1 = b + dΨ .

We need to compute two linearly independent small vectors v′1, v′2 in the kernel
of homomorphism f |L : A(Z × Z) → Z/n as the usual GLV method. Using the
same strategy as in the original GLV method, Ciet et al. introduced a way to
find two linearly independent small vectors v′1 and v′2 as follows;

v′1 = Âv1 (2)
v′2 = Âv2 (3)

where Â =
(

d −c
−b a

)
is the adjoint matrix of A. To decompose kP = k′

1Ψ0(P)+

k′
2Ψ1(P) for some k′

1, k′
2 = O(

√
n), they proceed as in the GLV method with v′1

and v′2.

3.2 Frobenius Expansion Using Random Decomposition

Now, we propose a new decomposition method analogous to the GLV method.
We transform L = [1, φ] in Section 2 to another lattice L′ by the 2 × 2 random

matrix A =
(

a b
c d

)
, ad− bc �= 0, where

A : L −→ L′

1 �−→ a + cφ

φ �−→ b + dφ.

Obviously, L′ = [a + cφ, b + dφ] is a sublattice of L. While the lattice in GLV
method is the kernel of the homomorphism f , the lattice L is a subring of the
endomorphism ring of E.

Our goal is to decompose s = s1 + s2φ ∈ L with the basis of the lattice L′.

A DPA Countermeasure by Randomized Frobenius Decomposition 277

Lemma 2. For any s = s1 + s2φ ∈ Z[φ], we can find k1, k2, r1, and r2 ∈ Z such
that

s = k1(a + cφ) + k2(b + dφ) + r1 + r2φ

= k1a + k2b + (k1c + k2d)φ + r1 + r2φ,

where the Euclidean length of r = r1 + r2φ is bounded by

max

{√
(a− b)2 + (c− d)2

2
,

√
(a + b)2 + (c + d)2

2

}
(4)

Proof. There exist x1, x2 ∈ Q such that(
s1
s2

)
=
(

a b
c d

)(
x1
x2

)
.

We can compute x1, x2 ∈ Q by(
x1
x2

)
=

1
(ad− bc)

(
d −b
−c a

)(
s1
s2

)
.

To obtain k1, k2 ∈ Z from x1, x2, set(
k1
k2

)
=
(�x1�
�x2�

)
.

Then (
r1
r2

)
=
(

s1
s2

)
−
(

a b
c d

)(
k1
k2

)
. (5)

See Fig. 2.

f

�

a+cf

b+df

a+b+ c+d f

s=s1+s2f

s1-r1 + s2-r2 f

Fig. 2. Choosing r = r1 + r2φ in L′

278 T.-J. Park et al.

Note that since a scalar k is in Z[φ], k can be expanded as k = k1a+k2b+(k1c+
k2d)φ + r1 + r2φ using the above lemma. Also, we can get k1a + k2b + (k1c +
k2d)φ =

∑l
i=0 k′

iφ
i by iterating the division algorithm in Lemma 1. Hence, a

scalar multiplication kP can be done as follows:

kP = (
l∑

i=0

k′
iφ

iP) + (r1 + r2φ)P,

where l ≈ 2n when we use the original expansion algorithms in [4, 6], and l = n
when we use optimized ones [22, 23, 24, 25]. Since we have chosen a, b, c and d
randomly, the computation sequence of kP is randomized. Hence this algorithm
can be used as a DPA countermeasure.

4 Efficiency and Security

In this section we describe our scalar multiplication algorithms secure against
DPA. Then we analyze the immunity to DPA and the extra computation costs
of the new countermeasures.

We begin by describing two well-known scalar multiplication algorithms using
the Frobenius expansion. Algorithm 1 [22, 23] is for the fields with q = 2, and
Algorithm 2 [24, 25] is for the fields with q � 2. Originally, the length of the
expansion in line 1 of each algorithm is approximately 2n. However, we can
reduce it to n by reducing k to k mod (φn − 1) before the expansion, since
φn(P) = P for any P . In Algorithm 2, kj

i means the j-th digit of ki, where the
0-th digit is regarded as the least significant digit.

The approximate numbers of elliptic curve point operations are n/3 additions
for Algorithm 1, and (n log2 q)/3 additions and log2 q doublings for Algorithm 2
on the average. (We do not consider the costs for φ expansions and φ-map
computations, since they are negligible operations.)

Next we give our new scalar multiplication algorithm which is immune to
DPA. Algorithm 3 is an implementation of the countermeasure given in
Section 3.

Now we estimate the additional computation costs of these algorithms. Note
that the cost for computing P ′ (line 2) in Algorithm 3 is approximately the same
as those of the whole scalar multiplications in Algorithms 1 and 2. Hence other

Algorithm 1. Scalar multiplication for q = 2
Input: scalar k, point P ∈ E(F2n)
Output: point Q = kP

begin
1. Compute the φ-adic NAF of k, i.e., k = n−1

i=0 kiφ
i, where ki ∈ {0, 1, −1}.

2. Q ← O.
3. for i = n − 1 downto 0 do

Q ← φ(Q); Q ← Q + kiP .
end

A DPA Countermeasure by Randomized Frobenius Decomposition 279

Algorithm 2. Scalar multiplication for q � 2
Input: scalar k, point P ∈ E(Fqn)
Output: point Q = kP

begin
1. Compute the φ-expansion of k, i.e., k = n−1

i=0 kiφ
i,

where each ki is represented as NAF,
and ki ∈ {−q/2, . . . , q/2} for even q, ki ∈ {−(q + 1)/2, . . . , (q + 1)/2} for odd q.

2. for i = 0 to n − 1 do
Pi ← φi(P).

3. Q ← O.
4. for j = �log2 q� downto 0 do

Q ← 2Q; Q ← Q + n−1
i=0 kj

i Pi.
end

Algorithm 3. Randomized scalar multiplication (q = 2 or q � 2)
Input: scalar k, point P ∈ E(Fqn)
Output: point Q = kP

begin
1. Compute the randomized expansion of k, i.e., k = n−1

i=0 kiφ
i + (r1 + r2φ),

where r1, r2 are represented as NAF.
2. Compute P ′ = n−1

i=0 kiφ
i(P).

(Use Algorithm 1 for q = 2 and Algorithm 2 for q � 2.)
3. P0 = P ; P1 = φ(P).
// Now we compute P ′ + r1P0 + r2P1.
4. Q ← O.
5. for j =(max digit index of r1, r2) downto 0 do

Q ← 2Q; Q ← Q + rj
1P0 + rj

2P1.
6. Q ← Q + P ′.

end

operations are computational overheads for DPA countermeasures, and it is easy
to see that the overhead for Algorithm 3 is (log2 ‖r1‖+log2 ‖r2‖)/3+1 additions
and max(log2 ‖r1‖, log2 ‖r2‖) doublings. These values become approximately
(2 log ‖a‖+ 1)/3 + 1 and log2 ‖a‖, respectively, if we set ‖a‖ ≈ ‖b‖ ≈ ‖c‖ ≈ ‖d‖
in (4) for the worst case.

For the security estimate, we have to compute the probability of collision. If
we choose randomly a, b, c and d where ‖a‖, ‖b‖, ‖c‖, ‖d‖ ≤ 210 as in [20], by
lemma 2 the lengths of r = r1 +r2φ are bounded by O(210). The number of such
r′s is about π · 220 since the area of a circle with its radius r is πr2. Therefore,
the probability of collision is about π·220

240 , that is O(2−20), since the total number
of matrices is around 240.

Table 1 shows the computational overhead of the countermeasure for various
q and n. If we assume the complexities of an addition and a doubling are approx-
imately the same, the computational overhead is 15.4–34.0% according to the
table. We also see that it decreases as q increases for a fixed qn value, since the
overhead is fixed regardless of q or n while the total cost increases as q increases.

280 T.-J. Park et al.

Table 1. Number of point operations (A: addition, D: doubling)

q n Algorithms 1 and 2 overhead for Algorithm 3

2
160 53A+0D 8A+10D (34.0%)
192 64A+0D 8A+10D (28.1%)
256 85A+0D 8A+10D (21.2%)

≈ 28
20 53A+8D 8A+10D (29.5%)
24 64A+8D 8A+10D (25.0%)
32 85A+8D 8A+10D (19.4%)

≈ 216
10 53A+16D 8A+10D (26.1%)
12 64A+16D 8A+10D (22.5%)
16 85A+16D 8A+10D (17.8%)

≈ 232
5 53A+32D 8A+10D (21.2%)
6 64A+32D 8A+10D (18.8%)
8 85A+32D 8A+10D (15.4%)

5 Conclusions

In this paper we have proposed a new countermeasure against DPA. Our coun-
termeasure is based on random decomposition of a scalar and it is applicable to
any curve where the Frobenius expansion is possible. According to our analysis,
the new countermeasure can produce a probability of collision around O(2−20)
with only 15.4–34.0% extra computation for scalar multiplications on curves over
various fields.

We remark that the random decomposition technique used in our countermea-
sure is related to the expansion methods given in [11, 12]. Hence the hyperelliptic
curve analog [26] of [11, 12] can be used to develop a DPA countermeasure over
hyperelliptic curves.

Note that not only our technique is used independently, but also it can be
used in conjunction with other countermeasures such as Coron’s method [14]
and Hasan’s method [19]. Note also that instead of the NAF-based simultane-
ous scalar multiplication algorithms in Algorithms 2 and 3, we can use further
optimized methods such as Straus-Shamir method of Solinas [27]. However, the
overhead ratio is almost not changed since the original computation and the
overhead are equally optimized.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology-
CRYPTO 85. Volume 218 of LNCS., Springer-Verlag (1986) 417–428

3. Koblitz, N.: CM-curves with good cryptographic properties. In: Advances in
Cryptology-CRYPTO 91. Volume 576 of LNCS., Springer-Verlag (1991) 279–287

4. Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic
two. Journal of Cryptology 11 (1998) 219–234

A DPA Countermeasure by Randomized Frobenius Decomposition 281

5. Cheon, J., Park, S., Park, S., Kim, D.: Two efficient algorithms for arithmetic of
elliptic curves using Frobenius map. In: Public Key Cryptography 98. Volume 1431
of LNCS., Springer-Verlag (1998) 195–202

6. Smart, N.: Elliptic curve cryptosystems over small fields of odd characteristic.
Journal of Cryptology 12 (1999) 141–151

7. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Advances in Cryptology-CRYPTO 2001.
Volume 2139 of LNCS., Springer-Verlag (2001) 190–200

8. Park, Y.H., Jeong, S., Kim, C., Lim, J.: An alternate decomposition of an integer
for faster point multiplication on certain elliptic curves. In: Public Key Cryptog-
raphy 2002. Volume 2274 of LNCS., Springer-Verlag (2002) 323–334

9. Sica, F., Ciet, M., Quisquater, J.J.: Analysis of the Gallant-Lambert-Vanstone
Method Based on Efficient Endomorphisms: Elliptic and Hyperelliptic Curves. In:
SAC 2002. Volume 2595 of LNCS., Springer-Verlag (2002) 21–36

10. Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for effi-
cient arithmetic on elliptic curves using fast endomorphisms. In: Advances in
Cryptology-EUROCRYPT 2003. Volume 2656 of LNCS., Springer-Verlag (2003)
388–400

11. Park, T.J., Lee, M.K., Park, K.: New frobenius expansions for elliptic curves with
efficient endomorphisms. In: ICISC 2002. Volume 2587 of LNCS., Springer-Verlag
(2003) 264–282

12. Park, T.J., Lee, M.K., Kim, E., Park, K.: A general expansion method using
efficient endomorphisms. In: ICISC 2003. Volume 2971 of LNCS., Springer-Verlag
(2004) 112–126

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in
Cryptology-CRYPTO 99. Volume 1666 of LNCS., Springer-Verlag (1999) 388–397

14. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: CHES 99. Volume 1717 of LNCS., Springer-Verlag (1999) 292–302

15. Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks. In:
CHES 2001. Volume 2162 of LNCS., Springer-Verlag (2001) 402–410

16. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography-an algebraic approach. In: CHES 2001. Volume 2162 of LNCS.,
Springer-Verlag (2001) 377–390

17. Liardet, P.Y., Smart, N.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: CHES 2001. Volume 2162 of LNCS., Springer-Verlag (2001) 391–401

18. Möller, B.: Securing elliptic curve point multiplication against Side-Channel At-
tacks. In: Advances in Cryptology-ISC 2001. Volume 2200 of LNCS., Springer-
Verlag (2001) 324–334

19. Hasan, M.: Power analysis attacks and algorithmic approaches to their counter-
measures for Koblitz curve cryptosystems. IEEE Transactions on Computers 50
(2001) 1071–1083 A preliminary version was presented at CHES 2000, pp.94–109.

20. Ciet, M., Quisquater, J.J., Sica, F.: Preventing differential analysis in GLV elliptic
curve scalar multiplication. In: CHES 2002. Volume 2523 of LNCS., Springer-Verlag
(2003) 540–550

21. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to a
finite field. IEEE Trans. Inform. Theory 39 (1993) 1639–1646

22. Solinas, J.: An improved algorithm for arithmetic on a family of elliptic curves.
In: Advances in Cryptology-CRYPTO 97. Volume 1294 of LNCS., Springer-Verlag
(1997) 357–371

23. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptogra-
phy 19 (2000) 195–249

282 T.-J. Park et al.

24. Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm
combining Frobenius map and table reference to adapt to higher characteristic.
In: Advances in Cryptology-EUROCRYPT 99. Volume 1592 of LNCS., Springer-
Verlag (1999) 176–189

25. Kobayashi, T.: Base-φ method for elliptic curves over OEF. IEICE Trans. Funda-
mentals E83-A (2000) 679–686

26. Park, T.J., Lee, M.K., Park, K., Chung, K.: Speeding up scalar multiplication
in genus 2 hyperelliptic curves with efficient endomorphisms. (2005) To appear in
ETRI Journal vol. 27, no. 5.

27. Solinas, J.: Low-weight binary representations for pairs of integers (2001)
Technical Report CORR 2001-41, CACR, Available at http://www.cacr.
math.uwaterloo.ca/techreports/2001/corr2001-41.ps.

DPA Attack on the Improved Ha-Moon
Algorithm�

Jong Hoon Shin, Dong Jin Park, and Pil Joong Lee

Information Security Laboratory,
Dept. of EEE, Postech, Pohang, Korea

{jhshin, djpark}@oberon.postech.ac.kr, pjl@postech.ac.kr

Abstract. The Ha-Moon algorithm [4] is a countermeasure against
power analysis using a randomized addition chain. It has two drawbacks
in that it requires an inversion and has a right-to-left approach. Re-
cently, Yen et al. improved the algorithm by removing these drawbacks
[11]. Their new algorithm is inversion-free, has a left-to-right approach,
and employs a window method. They insisted that their algorithm leads
to a more secure countermeasure in computing modular exponentiation
against side-channel attacks. This algorithm, however, still has a similar
weakness observed in [2, 10]. This paper shows that the improved Ha-
Moon algorithm is vulnerable to differential power analysis even if we
employ their method in selecting si.

Keywords: Ha-Moon algorithm, randomized exponentiation algorithm,
side-channel attack.

1 Introduction

Recent progress in side channel attacks on the embedded cryptosystem indicates
a need for a secure implementation of cryptographic primitives. These attacks
are so practical that attackers can obtain secret information, such as secret ex-
ponent, even if the implemented cryptosystem is mathematically secure. There-
fore, developers should implement cryptographic primitives securely as well as
efficiently. This principle is essential for exponentiation or elliptic curve scalar
multiplication, which is a major process in many cryptosystems.

Side channel attacks include power analysis attacks [6], timing attacks [5],
fault-based attacks [1], and EM attacks [3]. The most practical attacks are power
analysis attacks, which are widely studied. They exploit correlation between
an exponent and sampled power traces. According to the techniques employed,
power analysis is called simple power analysis (SPA) or differential power anal-
ysis (DPA). SPA is based on the common belief that different group operations
have different power trace shapes. If one implements the elliptic curve cryp-
tosystem (ECC), an SPA attacker can discover the secret exponent using the

� This research was supported by University IT Research Center Project, the Brain
Korea 21 Project.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 283–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

284 J.H. Shin, D.J. Park, and P.J. Lee

difference between addition and doubling. On the other hand, DPA is based on
the same underlying principle of SPA, but uses statistical techniques to extract
subtle differences in power traces. Classic DPA entails averaging and subtrac-
tion. After measuring a sufficient number of power traces, DPA divides them
into two groups by a selection function. The power traces of each group are av-
eraged, and then subtracted. A correct estimation of the secret key provides a
peak in a subtracted trace. Because averaging can improve the signal-to-noise
(SNR), DPA is sensitive to smaller differences below the noise level.

In 2002, Ha and Moon proposed an algorithm that prevents power analysis [4]
using a randomized addition chain. That is, the Ha-Moon algorithm randomizes
a secret exponent into a signed binary representation. Many researchers are in-
terested in this algorithm because of its simplicity and efficiency. Two drawbacks
of the Ha-Moon algorithm are that it requires an inversion of a group element
and recodes an exponent into a randomized representation from LSB to MSB
(i.e. right-to-left).

Recently, Yen et al. improved these drawbacks of the Ha-Moon algorithm
[11]; their new algorithm, the improved Ha-Moon algorithm, has a left-to-right
approach and does not require an inversion of a group element. Thus, their algo-
rithm can be applied in computing modular exponentiations, such as RSA and
DSA. They insisted that their algorithm leads to a more secure countermea-
sure implementing exponentiation against side-channel attacks. However, this
paper shows that the improved Ha-Moon algorithm is still vulnerable to dif-
ferential power analysis (DPA) [6, 7]. Thus, the improved Ha-Moon algorithm
should not be implemented in low-powered devices for which it was originally
designed.

The remainder of this paper organized as follows: In Section 2, we briefly
review the improved Ha-Moon algorithm. In Section 3, we propose an attack
method that shows the improved Ha-Moon algorithm is still vulnerable to DPA.
Finally, in Section 5, we conclude this paper.

2 Improved Ha-Moon Algorithm

The improved Ha-Moon algorithm has three improvements compared with the
original Ha-Moon algorithm. This algorithm uses a left-to-right approach, a non-
inversion technique, and a window method. In this section, we summarizes the
improved Ha-Moon Algorithm. See [11] for details.

2.1 Notations

Suppose that K is the n-bit private exponent and (kn−1kn−2 . . . k1k0)2 denotes
K’s binary representation. Let D = (dndn−1 · · ·d1d0)SD2 be one of K’s possible
signed-digit representations. Ki denotes the bit string from (n− 1)th to ith bits
of K, and Di denotes the signed-digit bit string from nth to ith bits of D. The
subscripts ()2 and ()SD2 mean that the numbers in the bracket are binary (0 or
1) and signed-digit binary (-1, 0, or 1) represented, respectively.

DPA Attack on the Improved Ha-Moon Algorithm 285

K = (kn−1kn−2 · · · k1k0)2, Ki = (kn−1 · · ·ki)2
D = (dndn−1 · · ·d1d0)SD2, Di = (dn · · · di)SD2.

2.2 Left-to-Right Recoding

The improved Ha-Moon algorithm randomly recodes a binary exponent into a
signed-digit exponent from MSB toward LSB. In this method, the original expo-
nent K = (kn−1kn−2 . . . k1k0)2 is randomly recoded into a signed-digit exponent
D = (dndn−1 · · ·d1d0)SD2 by the following equations:

ci − di = 2ci+1 − ki,

(kn−1kn−2 . . . ki+1ki)2 + ci = (dndn−1 · · ·di+1di)SD2,

where ci is the carry bit, and cn+1 is initialized to be 0.

2.3 Non-inversion Technique

When di = −1, an inversion occurs. To prevent an inversion, they modified a
recoding method in order not to generate a negative integer. The basic idea of
them is to reserve a small value bi (called the pre-borrow) from the higher priority
digit to the lower priority digit. Using the following equations, a randomized
exponent D can be changed to an inversion-free exponent D′:

Di = 2Di+1 + di,

D′
i = Di + bi = 2(Di+1 + bi+1) + (bi − 2bi+1 + di)
= 2D′

i+1 + d′i,
d′i − bi = di − 2bi+1.

For example, if di = −1 and bi+1 = −1 (i.e., a pre-borrow of one from its higher
priority digit), then the expected value at digit i becomes di − bi+1 × 2 = 1 and
we have the re-recoded d′i = 1.

The proposed exponentiation without division is given in Algorithm 1, where
the variable b is initially set to −(dndn−1)SD2 and F(·) calculates pre-borrow
and the re-recoded digit. For the details, see Section 3.3 in [11].

Algorithm 1. Exponentiation without division (Fig. 2 in [11])

Input: g,D = (dn, · · · , d0)SD2 where 2n−1 ≤ D ≤ 2n − 1
Output: gD

1. Precomputation: all values of gd′
i

2. R = 1
3. b = −(dndn−1)SD2

4. for i from n − 2 downto 0 do
4.1 (b, d′) = F(b, di)
4.2 R = R2

4.3 R = R × gd′

5. R = R × g−b

6. output R

286 J.H. Shin, D.J. Park, and P.J. Lee

2.4 The Windowing Technique

The non-inversion technique can be combined with the windowing method to
improve the performance. Necessary mathematical relationships with window
size of two are provided in the following equations:

Di = 4Di+2 + (di+1di)SD2,

D′
i = Di + bi = 4(Di+2 + bi+2) + (bi − 4bi+2 + (di+1di)SD2)
= 4D′

i+2 + d′i,
d′i − bi = (di+1di)SD2 − 4bi+2,

gD′
i = (gD′

i+2)4 × gd′
i.

For every two bits of the exponent, the windowing technique requires two squar-
ings and one multiplication (if d′i �= 0).

2.5 Randomized Exponentiation Without Inversion

Using these techniques, Yen et al. proposed the randomized exponentiation with-
out inversion. As a result, a randomized exponent d′i is recoded from the following
equation:

d′i − si = (ki+1ki)2 − 4si+2

where (ki+1ki)2 is a secret exponent to be recoded and si ∈R {−1,−2,−3}
introduces randomness in the representation. Since d′i becomes a positive integer
for all i, there is no inversion operation in Algorithm 2. In Algorithm 2, there
are always two squarings and multiplication sequences, which are not dummy
operations. Thus, the improved algorithm can resist SPA-like attacks, such as
Okeya et al.’ attack [9], and the safe-error attack [12]. Also, the improved Ha-
Moon algorithm may resist Fouque et al.’ attack [2], because the probability of
each state transitions seems to be equal.

Algorithm 2. Improved Ha-Moon algorithm with 2-bit window (Fig. 3 in [11])

Input: g, K = (kn−1, · · · , k0)2 where n is even and (kn−1kn−2)2 = (01)2, (10)2, or (11)2
Output: gK

1. R[0] = 1; R[1] = g

2. Precomputation: R[2] = g2, · · · , R[14] = g14

3. s = −(kn−1kn−2)2
4. for i from n − 4 downto 0 step −2 do

4.1 d = −4s
4.2 s =RandomInteger(−1, −3)
4.3 R[0] = R[0]4

4.4 R[0] = R[0] × R[d + s + (ki+1ki)2]
5. R[0] = R[0] × R[−s]
6. output R[0]

DPA Attack on the Improved Ha-Moon Algorithm 287

2.6 DPA Countermeasure

However, Algorithm 2 has a weakness similar to the original Ha-Moon algorithm
in that there are only a few possible intermediate values [2, 10]. After process-
ing (ki+1ki)2 in Step 4.4 of Algorithm 2, R[0] becomes one of g(kn−1···ki)2−1,
g(kn−1···ki)2−2, and g(kn−1···ki)2−3. In other words, there are only three possible
intermediate values in any iteration.

Table 1. Intermediate values, g4(kn−1···ki+2)2+xi , after processing (ki+1ki)2 (without
DPA countermeasure)

xi

(ki+1ki)2 −3 −2 −1 0 1 2
0 © © ©
1 © © ©
2 © © ©
3 © © ©

Table 1 shows different pattern of intermediate values according to (ki+1ki)2.
Given (kn−1 · · · ki+2)2, each occurrence of g4(kn−1···ki+2)2+xi can be checked by
DPA, such as ZEMD attack [7]. For example, (ki+1ki)2 = 0 results peaks in
xi = −3, −2, and −1 and (ki+1ki)2 = 1 in xi = −2, −1, and 0. Thus, given
(kn−1 · · · ki+2)2, we can find a correct (ki+1ki)2.

Note that, in this attack, a third of the samples are meaningful and the others
are treated as noise, because the possible distribution of intermediate values is
three.

Therefore, Yen et al. suggested a method to prevent this attack. Their method
is selecting si = −1 or −2 when (ki+1ki)2 = 0 or 2 as well as selecting si = −2 or
−3 when (ki+1ki)2 = 1 or 3. The allowed parameters are summarized in Table 2.

Table 2. Parameters with the Yen et al.’s method

si+2 (ki+1ki)2 (si, d
′
i)

−1 0 (−2, 2) or (−1, 3)
−1 1 (−3, 2) or (−2, 3)
−1 2 (−2, 4) or (−1, 5)
−1 3 (−3, 4) or (−2, 5)
−2 0 (−2, 6) or (−1, 7)
−2 1 (−3, 6) or (−2, 7)
−2 2 (−2, 8) or (−1, 9)
−2 3 (−3, 8) or (−2, 9)
−3 0 (−2, 10) or (−1, 11)
−3 1 (−3, 10) or (−2, 11)
−3 2 (−2, 12) or (−1, 13)
−3 3 (−3, 12) or (−2, 13)

288 J.H. Shin, D.J. Park, and P.J. Lee

Table 3. Intermediate values, g4(kn−1···ki+2)2+xi , after processing (ki+1ki)2 (with DPA
countermeasure)

xi

(ki+1ki)2 −3 −2 −1 0 1 2
0 © ©
1 © ©
2 © ©
3 © ©

Their method can make (ki+1ki)2 = 0 and 1(2 and 3) indistinguishable. For this
reason, they insisted that this attack can be avoided. Table 3 shows different
pattern of intermediate values according to (ki+1ki)2, when their method (DPA
countermeasure) is applied.

3 Proposed Attack

Yen et al. wanted to increase a randomness by adding random integer s in each
iteration. Unfortunately, their method does not provide additional randomness
in the intermediate values. The indistinguishability after processing (ki+1ki)2
can be removed in the successive iteration. After processing (ki−1ki−2)2 in Step
4.4 of Algorithm 2, R[0] becomes

g16(kn−1···ki+2)2+4(ki+1ki)2+(ki−1ki−2)2+si−2

where si−2 ∈ {−1,−2,−3}.
Table 4 shows possible values of R[0] after processing (ki−1ki−2)2. If (kn−1 · · ·

ki+2)2 is known, we can determine (ki+1ki)2 and classify (ki−1ki−2)2 into a
group A (0 or 1) or a group B (2 or 3). For example, if a peak is recorded in
Step 1.1.3 of Algorithm 3 when x = 6 and 7, then we can find that (ki+1ki)2 is
2 and (ki−1ki−2)2 is classified into a group A. Thus, we can determine a secret
exponent K except (k1k0)2, of which we can classify the group, A or B; the
size of the search space from the remaining ambiguity in (k1k0)2 is only two. In
addition, our attack does not assume anything beyond ZEMD attack.

Table 4. Intermediate values, g16(kn−1···ki+2)2+xi−2 , after processing (ki−1ki−2)2

xi−2

(ki+1ki)2 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 A A B B

1 A A B B

2 A A B B

3 A A B B

A means (ki−1ki−2)2 = 0 or 1, and
B means (ki−1ki−2)2 = 2 or 3.

DPA Attack on the Improved Ha-Moon Algorithm 289

Algorithm 3. ZEMD-like attack on the improved Ha-Moon algorithm

Input: sufficiently many power trace samples of gK
w for different gw’s

Output: K

1. for i from n − 2 downto 2 step −2 do
1.1 for x from −2 to 13 step 1 do

1.1.1 divide the samples into two sets S1 and S2 according to a decision function,
such as the Hamming weight of g

16(kn−1···ki+2)2+x
w

1.1.2 get the bias signal as D = avg(S1) − avg(S2)
1.1.3 record an appearance of a peak in D

1.2 determine (ki+1ki)2 and classify (ki−1ki−2)2 into a group A or B according to
records in Step 1.1.3

2. guess (k1k0)2
3. output K

Therefore, the improved Ha-Moon algorithm is vulnerable to the proposed
attack. Yen et al.’s method does not prevent DPA, it rather helps DPA to break
the improved Ha-Moon algorithm by increasing the rate of the meaningful power
traces from a third to a half, because their method makes the possible distribu-
tion of intermediate values be two. Even enlarging the range of the intermediate
values will not increase the complexity of DPA significantly, but only decrease
the rate in inverse proportion to the range.

4 Improvements of Proposed Attack

4.1 Reducing Test Space of DPA

After we classify (ki−1ki−2)2 in Step 1.2 of Algorithm 3, it is not necessary to test
for all x from -2 to 13 in the next iteration. For example, if (ki−1ki−2)2 is classi-
fied as group A, then (ki−1ki−2)2 is 0 or 1. Therefore we can find a peak in tests
for x from -2 to 5 and there is no peak in tests for x from 6 to 13 in the next itera-
tion. That is, a half of tests for x is not necessary in Step 1.1 of Algorithm 3. This
can be applied in each iteration and doubles the efficiency of the Algorithm 3.

4.2 Analysis of Power Traces

In Algorithm 3, a peak is appeared twice in the successive iteration for x and
each bias signal D is independently analyzed. If two bias signals in two successive
iterations are analyzed at the same time, then a peak is found more easily. For
example, if we analyze the addition of two bias signal by using a peak detection
algorithm, such as mean square, then peak is detectable more easily compared
with Algorithm 3.

4.3 Appliance of Two Improvements

By applying two things mentioned Section 4.1 and 4.2, we modify Algorithm 3
to Algorithm 4.

290 J.H. Shin, D.J. Park, and P.J. Lee

Algorithm 4. Modified ZEMD-like attack on the improved Ha-Moon algorithm

Input: sufficiently many power trace samples of gK
w for different gw’s

Output: K

1. for x from −2 to 12 step 2 do
1.1 divide the samples into two sets S1 and S2 according to the Hamming weight

of gx
w

1.2 divide the samples into two sets S3 and S4 according to the Hamming weight
of gx+1

w

1.3 get the bias signal as D = avg(S1) − avg(S2) + avg(S3) − avg(S4)
1.4 record an appearance of peak in D

2. determine (kn−1kn−2)2 and classify (kn−3kn−4)2 into a group A or B
3. for i from n − 4 downto 2 step -2 do

3.1 if (ki+1ki)2 is classified A, then start = −2, else start = 6
3.2 for x from start to (start + 6) step 2 do

3.2.1 divide the samples into two sets S1 and S2 according to the Hamming
weight of g

16(kn−1···ki+2)2+x
w

3.2.2 divide the samples into two sets S3 and S4 according to the Hamming
weight of g

16(kn−1···ki+2)2+x+1
w

3.2.3 get the bias signal as D = avg(S1) − avg(S2) + avg(S3) − avg(S4)
3.2.4 record an appearance of peak in D

3.3 determine (ki+1ki)2 and classify (ki−1ki−2)2 into a group A or B
4. guess (k1k0)2
5. output K

5 Conclusion

In this paper, we reviewed the improved Ha-Moon algorithm and analyzed it
with respect to DPA. The improved Ha-Moon algorithm introduced interesting
properties, such as a left-to-right approach, an inversion-free, and a window
method. However, the improved Ha-Moon algorithm does not resolve one critical
property of the Ha-Moon algorithm: its vulnerability to DPA. Therefore, the
improved Ha-Moon algorithm should be used with another DPA countermeasure.

Acknowledgements

The authors would like to thank an anonymous referee for many valuable
comments.

References

1. D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking cyprto-
graphic protocols for faults, ”EUROCRYPT 1997, LNCS 1233, pp. 37–51, Springer-
Verlag, 1997.

2. P.-A. Fouque, F. Muller, G. Poupard, and F. Valette, “Defeating countermeasures
based on randomized BSD representation,” CHES 2004, LNCS 3156, pp. 312–327,
Springer-Verlag, 2004.

DPA Attack on the Improved Ha-Moon Algorithm 291

3. K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete re-
sults,” CHES 2001, LNCS 2162, pp. 255–265, Springer-Verlag, 2001.

4. J. C. Ha, and S. J. Moon, “Randomized signed-scalar multiplication of ECC to
resist power attacks,” CHES 2002, LNCS 2523, pp. 551–563, Springer-Verlag, 2002.

5. P. Kocher, “Timing attack on implementations of Diffie-Hellman, RSA, DSS and
other systems, ”CRYPTO 1996, LNCS 1109, pp. 104–113, Springer-Verlag, 1996.

6. P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” CRYPTO 1999,
LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

7. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of modu-
lar exponentiation in smartcards,” CHES 1999, LNCS 1717, pp. 144–157, Springer-
Verlag, 1999.

8. K. Okeya, and T. Takagi, “A more flexible countermeasure against side channel
attacks using window method.” CHES 2003, LNCS 2779, pp. 397–410, Springer-
Verlag, 2003.

9. K. Okeya, and D.-G. Han, “Side channel attack on Ha-Moon’s countermeasure
of randomized signed scalar multiplication,” INDOCRYPT 2003, LNCS 2904, pp.
334–348, Springer-Verlag, 2003.

10. S. G. Sim, D. J. Park, and P. J. Lee, “New power analyses on the Ha-Moon algo-
rithm and the MIST algorithm,” ICICS 2004, LNCS 3269, pp. 291–304, Springer-
Verlag, 2004.

11. S.-M. Yen, C.-N. Chen, S. Moon and J. Ha, “Improvement on Ha-Moon randomized
exponentiation algorithm,” ICISC 2004, to appear in LNCS, Springer-Verlag, 2004.

12. S.-M. Yen, S. Kim, S. Lim, and S. Moon, “A countermeasure against one physical
cryptanalysis may benefit another attack,” ICISC 2001, LNCS 2288, pp. 414–427,
Springer-Verlag, 2004.

An Efficient Masking Scheme
for AES Software Implementations�

Elisabeth Oswald1 and Kai Schramm2

1 Institute for Applied Information Processing and Communciations (IAIK),
TU Graz, Inffeldgasse 16a, A–8010 Graz, Austria

2 Horst Görtz Institute for IT Security (HGI), Universitätsstr. 150,
Ruhr University Bochum, Germany, 44780 Bochum, Germany

elisabeth.oswald@iaik.tugraz.at,
schramm@crypto.ruhr-uni-bochum.de

Abstract. The development of masking schemes to secure AES imple-
mentations against power-analysis attacks is a topic of ongoing research.
The most challenging part in masking an AES implementation is the
SubBytes operation because it is a non-linear operation. The current
solutions are expensive to implement especially on small 8-bit proces-
sors; they either need many large tables or require a large amount of
operations. In this article, we present a masking scheme that requires
considerably less tables and considerably less operations than the previ-
ously presented schemes. We give a theoretical proof of security for our
scheme and confirm it with actually performed DPA attacks.

1 Introduction

The Advanced Encryption Standard (short: AES) [Nat01] is the worldwide de-
facto standard for symmetric encryption. It succeeds the older Data Encryption
Standard (short: DES) [Nat99]. Therefore, it will be used in manifold services
ranging from high-performance applications such as web services to low-cost (low
memory, low power consumption) implementations on smart cards. Especially
in the case of software implementations for smart cards limited memory (ROM,
RAM, XRAM) poses a challenging constraint for implementors. Even worse,
implementation attacks such as differential power analysis attacks (short: DPA
attacks) [KJJ99] require considerable effort from the implementor’s side to come
up with implementations that do not succumb to such attacks.

During the past years, a lot of effort has been devoted to the research in
DPA attacks. It has become clear that smart cards without built in countermea-
sures are highly susceptible to all kinds of DPA attacks. Hence, researchers have
proposed all kinds of schemes to secure implementations of different kinds of
cryptographic algorithms. The AES algorithm has received the largest attention
amongst symmetric schemes because of its expected widespread use.

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 292–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient Masking Scheme for AES Software Implementations 293

In this article, we focus on the scenario where AES is implemented in soft-
ware on 8-bit platforms such as commonly available smart cards. We propose a
masking scheme for this scenario which requires less tables, i.e., less memory,
and less operations than comparable schemes in the same scenario.

The remainder of this article is organized as follows. In Sect. 2, we give a
brief overview of AES. In Sect. 3, we review the problem of masked AES im-
plementations on restricted platforms and we survey related work. In Sect. 4,
we introduce our new scheme and provide a theoretical analysis of its security
against DPA attacks. In Sect. 5, we describe our implementation of our new
scheme on an 8-bit smart card. In Sect. 6, we report on the results of practical
DPA attacks that we have performed on our implementation. We conclude this
article in Sect. 7.

2 Advanced Encryption Standard

The AES is a symmetric cipher which encrypts/decrypts data with a block size
of 128 bits using a key of size 128, 192 or 256 bits. In the following we will briefly
decribe the encryption scheme of AES. The decryption scheme is equivalent but
uses the inverse transformations. The 16-byte plaintext p0p1...p15 is arranged in
four-by-four byte matrix, called state. All transformations in AES operate on
the state.

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

The following transformations are used in the AES cipher:

1. AddRoundKey: A round key is added to the state matrix using the XOR
operation. The round keys are derived from the key with the Key Expansion
algorithm.

2. ShiftRows: The second row of the state matrix is cyclically shifted by one
byte to the left, the third row by two bytes and the fourth row by three bytes.
The first row remains unchanged. The ShiftRows transformation increases
the diffusion properties of AES.

3. SubBytes: Each byte of the state matrix is substituted using a bijective
substitution box (short: S-box). The S-box is based on the non-linear inver-
sion in the finite field GF (28) and a bitwise affine transformation. The S-box
step increases the confusion properties of AES.

4. MixColumns: The MixColumns step is a linear transformation, which in-
creases the diffusion properties of AES. Each column is mixed using the
following matrix multiplication:⎛⎜⎜⎝

c0
c1
c2
c3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞⎟⎟⎠
⎛⎜⎜⎝

b0
b1
b2
b3

⎞⎟⎟⎠

294 E. Oswald and K. Schramm

where bi are the bytes of the input column, ci are the bytes of the out-
put column, and matrix elements {03}, {02} and {01} correspond to the
polynomials x + 1, x and 1.

5. Key Expansion: The key expansion derives the round keys from the cipher
key.

The AES encryption scheme is given below:

AddRoundKey

for round = 1 to Nr
SubBytes
ShiftRows
MixColumns
AddRoundKey

end

SubBytes
ShiftRows
AddRoundKey

The Key Expansion is typically performed interleaved with the rounds in soft-
ware. The number of rounds Nr depends on the key size. If the key size is 128,
192 or 256 bits 10, 12 or 14 rounds are used, respectively. All AES transforma-
tions but SubBytes are linear. Hence, only SubBytes requires special attention
with regard to masking. This articles intensely focuses on a secure yet efficient
software implementation of SubBytes.

3 Related Work

In a typical software implementation, the SubBytes operation is implemented
as a table look-up. Hence, for an input value in of a SubBytes operation, the
output is derived as out = S(in). As there are 16 8-bit chunks in the AES state,
16 table look-up operations have to be performed in one encryption round (not
taking the key schedule into account).

When we mask the SubBytes operation with a value m (the mask), i.e., when
we add a random value m′ (the mask) to its input, we have to re-compute the
table S such that out = S(in)+ m, where in is masked,i.e., in = x+ m′. Hence,
we need a table MSubBytes() such that

MSubBytes(x + m′) = SubBytes(x) + m.

The MSubBytes() table for the masks m and m′ (for simplicity, m is often
chosen to be equal to m′) is calculated according to Algorithm 1. The exclusive-
or (short: XOR) operation is denoted by + in this article.

When more than one mask m is to be used, more MSubBytes() tables need
to be computed. For example, when using 16 masks m, 16 tables are needed.

An Efficient Masking Scheme for AES Software Implementations 295

Algorithm 1. Computation of Masked SubBytes
Require: m, m’
Ensure: MaskedSubBytes(x + m′) = SubBytes(x) + m,
1: for i = 0 to 255 do
2: MaskedSubBytes(i + m′) = Subbytes(i) + m
3: end for
4: Return(MaskedSubBytes)

As stated in [GT03], the usage of the same mask for all 16 s-boxes represents a
serious threat, because intermediate variables (e.g. the s-box outputs) are masked
with the same mask and their mutual correlation can be used to apply second
order DPA attacks.

For this article, we consider the scenario where AES is implemented on an
8-bit smart card. We assume that AES is not used for bulk encryption. Instead,
AES is used for example in a challenge-response protocol, where only one in-
stance of the algorithm is typically computed at a time.

For every mask m, a masked table needs to be computed. There are sev-
eral strategies an implementor can follow. Either all 256 masked tables are pre-
computed and stored in a memory, or, only t tables for the t 8-bit masks are
pre-computed at the beginning of the AES algorithm and stored in memory.
Another option is to compute the masked table on the fly whenever it is needed
during the encryption algorithm.

We argue that in practice the second method is the most attractive one,
because it gives the best tradeoff between the amount of memory and the number
of operations. Remember that the size of one table is 256 bytes. Counting the
number of operations for this algorithm for t masks shows that in total an
amount of 2 × t × 256 table look-ups read/write operations and 2 × t × 256
XOR operations are needed. In total, (t + 1) × 256 bytes of memory are used.
In typical AES implementations, a separate mask for each 8-bit chunk would
be used. That amounts then to 8192 table look-ups, 4352 bytes of memory and
8192 XOR operations.

Many algorithmic countermeasures have been proposed for the AES algo-
rithm, see [AG01], [GT03], [TSG03], [TK04], [BGK05] and [OMPR05]. They
are all based on masking the intermediate value, i.e., adding a random num-
ber (the mask) to the intermediate AES values. However two of them, [AG01]
and [TSG03], are both susceptible to a certain type of (first-order) differential
side-channel attack, the zero-value attack. The latter one has turned out to be
vulnerable even to standard differential side-channel attacks [ABG04].

The countermeasure presented in [GT03] leads to very costly implementa-
tions. This is due to the fact that in order to circumvent the zero-value problem,
the authors propose to embed the inversion operation (which is part of Sub-
Bytes) into a larger algebraic structure such that the zero-value is mapped to
different non-zero values. Although this construction is mathematically elegant,
implementations thereof, especially on 8-bit platforms, are not.

The countermeasure presented in [TK04] uses pre-computed discrete loga-
rithm and exponentiation tables to realize the SubBytes operation (i.e., the

296 E. Oswald and K. Schramm

inversion operation that is part of the mathematical description of SubBytes).
This approach is based on the fact that a non-zero element in a finite field can
be inverted by computing the logarithm of the element to a particular base1 and
exponentiating the base again with the negated logarithm. The inversion of the
zero element has to be carefully taken into account by using a conditional check,
e.g. the authors suggest to manipulate the discrete logarithm and exponentia-
tion tables in such a way that the zero element is inverted correctly to itself.
Unfortunately, we believe that this approach has a flaw which is linked to the
inversion of the zero element. In their work, the authors state that conditional
branching for the zero element can be avoided by changing two table elements:
log[0] = 2n− 1 and alog[2n− 1] = 0. However, because an inversion is defined as

α−1 = alog[(2n − 1)− log[α]]

the inversion of zero will result in 0−1 = alog[0] = 1 �= 0 and, moreover, the
inversion of 1 will result in 1−1 = alog[(2n− 1)− log[1]] = alog[2n− 1] = 0 �= 1.
As a matter of fact, by setting log[0] = 0, log[1] = 2n − 1 and alog[2n − 1] = 0,
we found a possibility to correct the log and alog tables in such a way that
both inversions will work properly, again. In their paper, a multiplication of two
elements is defined as

α · β = alog[log[α] + log[β] mod 2n − 1]

However, when using this method a multiplication with zero will only always
result in zero, if conditional branching is used. Based on the inversion and mul-
tiplication with the log and alog tables the authors propose two different masking
schemes which are supposed to provide a secure inversion. We have carefully im-
plemented and tested both schemes. We observed that in both schemes there
occur special cases when the s-box input, the mask or masked, intermediate
variables are equal to zero and which will result in a faulty behavior of the
proposed masking schemes. We believe that a correction of their approach is
only possible with the use of conditional branches, which makes it susceptible to
power-analysis attacks.

The countermeasures presented in [BGK05] and [OMPR05] are based on a
similar idea. In both papers, the authors assume that the inversion operation is
computed step-by-step, either as exponentiation or with composite field arith-
metic. The exponentiation method is advertised for software implementations
and described in [BGK05]. The composite-field method is advertised for hard-
ware implementations and is described in detail in [OMPR05]. Both methods
do not seem to be particularly suited for 8-bit software implementations. How-
ever, as we will show in this article, especially the composite-field method can
be adapted in such a way that it is suitable for 8-bit platforms.

4 A New Scheme for Efficiently Masking AES in Software

The only difficult part in masking AES is to mask the SubBytes operation. The
SubBytes operation is composed of two parts: an inversion in GF (28) and an
1 i.e. for a chosen generator.

An Efficient Masking Scheme for AES Software Implementations 297

affine mapping. Again, masking the affine part is easy, so we focus on the non-
linear inversion operation only. Our goal is that all input and output values in
the computation of the inverse are masked. According to [OMPR05], a masked
input can be transformed to the composite field GF (24)×GF (24) with an iso-
morphic mapping, where it can be securely and efficiently inverted, and finally
transformed back to the GF (28). The inversion operation in the composite field
can be computed as follows:

((ah+mh)x+(al+ml))−1 =(a′
h + m′

h)x + (a′
l + m′

l) (1)

a′
h + m′

h = fah
((ah + mh), (d′ + m′

d), mh, m′
h, m′

d)
= ah × d′ + m′

h (2)

a′
l + m′

l = fal
((a′

h+m′
h), (al+ml), (d′+m′

d), ml, m
′
h, m′

l, m
′
d)

= (ah + al)× d′ + m′
l (3)

d + md = fd((ah + mh), (al + ml), p0, mh, ml, md)
= a2

h × p0 + ah × al + a2
l + md (4)

d′ + m′
d = fd′(d + md, md, m

′
d)

= d−1 + m′
d (5)

The functions fah
, fal

, fd and fd′ are functions on GF (24).
This calculation of a masked inversion operation is based on the composite

field approach that is described in detail in [WOL02].
Whereas in [OMPR05] this approach is applied to hardware implementations

and has been extended to work in so-called tower fields, we pursue a different
approach. We show that these formulae can be mapped to a sequence of table
look-ups and XOR operations. We show how to define tables which only require
little space in memory. Furthermore, we show that only a small number of table
look-ups are required to calculate the formulae.

4.1 Pre-computed Tables

We compute a number of tables that do the operations in GF (24) and store
them in memory:

Td1 : ((x + m), m) �→ x2 × p0 + m

Td2 : ((x + m), (y + m′)) �→ ((x + m) + (y + m′))× (y + m′)
Tm : ((x + m), (y + m′)) �→ (x + m)× (y + m′)

Tinv : ((x + m), m) �→ x−1 + m.

All tables (or functions) take two elements of GF (24) as inputs and give an
element of GF (24) as output.

With those 4 Tables, we can compute formulas (2)-(5). In order to map
GF (28) elements to GF (24) × GF (24) elements and vice versa, we need two

298 E. Oswald and K. Schramm

more tables Map : x �→ z and Map−1 : z �→ x. Map takes an element x of
GF (28) as input and gives an element z of GF (24)×GF (24) as output. Map−1

works vice versa. We assume that for all tables the input masks and the out-
put masks are identical. Hence, the size of one table is at most 256 bytes and
so we can pre-compute all tables and store them in read-only memory (ROM),
since there is no need to compute them during run-time. This is a significant
advantage over the use of MSubBytes() tables. They have to be computed for
every new mask m during run-time or at least at the invocation of a new AES
encryption run.

4.2 Masked Inversion

First, we have to compute the masked value of d, i.e., d+md = d+mh according
to (4):

fd(ah + mh, al + ml, mh, ml, mh) = Td1(ah + mh, mh)
+ Td2((ah + mh), (al + ml))
+ Tm((ah + mh), ml)
+ Tm((al + ml), mh) + Tm((mh + ml), ml).

(6)

It is easy to check that the result will be indeed a2
h × p0 + ah × al + a2

l + mh.
For this computation we need five table look-up operations (TLs), four XOR
operations and an additional XOR operation to compute (mh + ml) which is
used as input in Tm((mh + ml), ml). Note that the results of Tm((ah + mh), ml)
and Tm((al + ml), mh) are used again in (8) and (9), respectively, therefore it is
a good idea to store these results and reuse them later on in order to save these
two look-up operations.

In the next step we compute the inverse of the masked d with one more table
look-up operation:

fd′(d + mh, mh, mh) = Tinv(d + mh, mh). (7)

In order to derive fah
(), we first compute d−1 +ml by one XOR addition with

the term (mh +ml). Then fah
(ah +mh, d−1 +ml, mh, mh, ml) can be computed

as follows:

fah
(ah + mh, d−1 + ml, mh, mh, ml) = Tm(ah + mh, d−1 + ml)

+mh + Tm(d−1 + ml, mh)
+Tm(ah + mh, ml) + Tm(mh, ml). (8)

This computation gives as output ah × d−1 + mh. For this computation, we
need three new table look-up operations and four XOR operations in total.

In the last step we derive fal
(ah×d−1+mh, al+ml, d

−1+ml, ml, mh, ml, ml).
Hence, we calculate:

An Efficient Masking Scheme for AES Software Implementations 299

fal
(ah × d−1 + mh, al + ml, d

−1 + ml, ml, mh, ml, ml)
= Tm((al + ml), (d−1 + mh)) + ml + Tm(d−1 + mh, ml)
+Tm(al + ml, mh) + fah

+ mh + Tm(mh, ml). (9)

This gives al×d−1+ah×d−1+ml as a result. Note that the term Tm(mh, ml)
occurs in the computation of fah

and fal
.

Hence, by also storing fah
+ Tm(mh, ml) during the computation of fah

and
using this term during the computation of fal

, one additional table look-up
and one XOR can be saved. Therefore, for this computation we only need two
additional table look-ups and five XOR operations.

Prior to the inversion in GF (24) × GF (24) we need to map the 8-bit values
(elements in GF (28)) to 2×4-bit values (elements in GF (24)×GF (24)). This is
done by a table look-up as well. Mapping back from GF (24)×GF (24) to GF (28)
can be achieved with an additional look-up table. Moreover, it makes sense to
combine the isomorphic mapping from GF (24) × GF (24) to GF (28) with the
affine transformation that is part of SubBytes and use only one table for both.

Total Costs of a Masked Inversion. If we review the number of table look-ups
(TLs) and XOR additions required for an entire masked AES SubBytes opera-
tion, we need five TL operations and four XOR additions in (6), one TL operation
in (7), three TL operations and four XOR additions in (8), two TL operations
and five XOR additions in (9). Furthermore, we need three TL operations for
the isomorphic transformations: two TL operations to map the masked inver-
sion input and the mask to GF (24)×GF (24) and one TL operation to map the
masked result of the inversion back to GF (28) and perform the affine transform.

This sums up to a total of 14 table look-up operations and 15 XOR operations.

4.3 Theoretical Security Analysis

In this section we show that all data-dependent intermediate masked values that
are computed during the masked inversion operation are statistically indepen-
dent from the unmasked values.

Hence, we follow the definition of security that was introduced in [CJRR99]
and strengthened in [BGK05].

The values that we have to investigate are the outputs of the functions (tables)
Tdi, Tm, Tinv, Map, Map−1 and all intermediate values that occur after an
XOR operation. In [OMPR05] it has been shown in Lemma 5 that a sum of
independent masked values will again be independent from the unmasked values
as long as an independent mask is used during the summation. Furthermore, in
Lemmas 1–4 it has been shown that the XOR operation, as well as the masked
multiplication and the masked squaring are secure in the sense that their output
is statistically independent from the plaintext input.

Lemma 1. Let x ∈ GF (2n) be arbitrary and let p0 ∈ GF (2n) be an arbitrary
but fixed value. Let m ∈ GF (2n) be independently and uniformly distributed in
GF (2n). Then Td1(x + m, m) = x2 × p0 + m is uniformly distributed regardless
of x. Therefore, the distribution of x2 × p0 + m is independent of x.

300 E. Oswald and K. Schramm

Proof. As x is an element of the binary extension field, the element x2 =
(
∑

i aiα
i)2 =

∑
i aiα

2i with ai ∈ {0, 1} is in GF (2n) as well. Hence, all ele-
ments of GF (2n) are quadratic residues and thus x2 is uniformly distributed on
GF (2n). Consequently, also x2 × p0 and x2 × p0 + m are uniformly distributed.

For the independency of the output of Td2 we reuse Lemma 2 of [BGK05].

Lemma 2. Let x, y ∈ GF (2n) be arbitrary. Let m, m′ ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution of
Tm(x + m, y + m′) = (x + m)× (y + m′) is

Pr((x + m)× (y + m′) = i) =
{

2n+1−1
22n , if i = 0, i.e., if m = x or m′ = y

2n−1
22n , if i �= 0.

Therefore, the distribution of (x + m)× (y + m′) is independent of x and y.

Lemma 3 follows directly from Lemma 2 and the observation that all elements
of GF (2n) are quadratic residues.

Lemma 3. Let x, y ∈ GF (2n) be arbitrary. Let m, m′ ∈ GF (2n) be indepen-
dently and uniformly distributed in GF (2n). Then the probability distribution of
Td2(x + m, y + m′) = (x + m)× (y + m′) + (y + m′)2 is

Pr((x+m)×(y+m′)+(y+m′)2 = i)=
{

2n+1−1
22n , if i=0, i.e., if m=x or m′=y

2n−1
22n , if i �= 0.

Therefore, the distribution of (x + m)× (y + m′) is independent of x and y.

The independence of Tinv(x + m, m) = x−1 + m is clear as the inversion
operation is bijective (note that the zero element is mapped to the zero element)
and the XOR of any a + m is independent from a. The mappings between
GF (28) and GF (24)×GF (24) are bijections and therefore their masked output
is independent from the unmasked input in a statistical sense.

Based on these results we may conclude that the algorithm for computing
masked inversion complies to the definition of security used in [BGK05].

Recently it was discovered, see [MPG05] and [SSI04], that glitches in CMOS
circuits make masked implementations vulnerable to standard DPA attacks. Our
masking scheme is also secure when glitches occur in a circuit as we only use
table look-ups and XOR operations. For both operations it has been shown that
glitches do not have an effect on their security, see [MPG05].

5 Implementation of the New Scheme

In our following analysis we regard the implementation of the SubBytes trans-
formation in assembly on a smart card based on the 8-bit RISC architecture.
In total, we require six pre-computed tables which can be stored in read-only
memory (ROM). Table Td1 takes two GF (16) elements as input and gives one

An Efficient Masking Scheme for AES Software Implementations 301

GF (16) element as output. The same holds for Td2, Tm and Tinv, as well. Hence,
these four tables map an 8-bit input to a 4-bit output value.

In a practical software implementation there are two possibilities how the
tables Td1, Td2 , Tm and Tinv can be stored in memory on an 8-bit architecture.
In a compact representation, each byte of these four tables stores two 4-bit
output values, hence, each table requires 128 bytes in ROM and the four tables
altogether require 4×128 = 512 bytes in ROM. The disadvantage of this compact
representation is based on the fact that a few instructions are required after each
table look-up to either erase the unwanted upper 4-bit half or to shift the upper
4-bit half by four bits to the right in order to erase the unwanted lower 4-bit
half. These instructions are not required, if each byte of the tables Td1 , Td2, Tm

and Tinv only stores a single 4-bit result and the upper 4-bit half is always set to
zero. This representation is more efficient in terms of clock cycles, but requires
4× 256 = 1024 bytes in ROM. In the following we will only regard the efficient
representation. The two isomorphic mappings from GF (28) to GF (24)×GF (24)
and back from GF (24) ×GF (24) to GF (28) deliver a GF (24) × GF (24) and a
GF (28) element as output, i.e. these two tables map an 8-bit input to an 8-bit
output. Hence, in total we need 4× 256 + 2 × 256 = 1536 bytes to store all six
tables in ROM.

The smart card architecture is a RISC design and provides 32 internal reg-
isters. A TL operation which reads an 8-bit value from a table stored in ROM
to an internal register takes five clock cycles. A TL operation which reads an
8-bit value from a table stored in RAM to an internal register or writes an 8-bit
value to a table stored in RAM takes four clock cycles. The XOR addition of
two internal registers requires only a single clock cycle.

In an unmasked AES software implementation every SubBytes step would
only require a single TL operation. If a standard masked table look-up, such as
described in Sect. 3 is used, the SubBytes table would be stored in ROM and the
masked tables would be derived from it prior to an AES encryption/decryption
and then stored in RAM. If only one encryption is performed, this pre-
computation would very likely be done for the 16 masks, only, and thus re-
quire 16× 256 = 4096 bytes in RAM. During the encryption/decryption of AES
only a single TL operation would be required for each SubBytes step. However,
the pre-computation of the each masked table in RAM would require 256 XOR
additions to mask the table index, 256 TL operations to read the unmasked ta-
ble entries from ROM, 256 XOR additions to mask the table entries and finally
256 TL operations to store the masked table in RAM. If tables are generated in
such a way for 16 different masks, this will result in pre-computational costs of
16× (256 + 256× 5 + 256 + 256× 4) = 45056 clock cycles. If several encryption
operations would be performed after each other and the same set of masks is
used over and over again, the pre-computational costs occur only once. However,
from a security point of view it is advisable to update the masks as often as pos-
sible. Another possibility is to store all masked tables in ROM. However, this
would require 256× 256 = 64 KB in ROM which might exceed the limitations
in constrained environments such as smart cards.

302 E. Oswald and K. Schramm

Table 1. Comparison of various AES software implementations with regard to code
size and speed for a single encryption

ROM RAM PRE-TL PRE-XOR TL XOR cycles
unmasked 256 0 0 0 160 0 800

256 fixed masks 64 KB 0 0 0 160 0 800
single mask 256 256 512 512 160 0 3456
16 masks 256 4096 8192 8192 160 0 45696
MOS-box 1536 0 0 0 2240 2400 13600

As stated in Sect. 4, when using our proposal an entire SubBytes step for an
arbitrary mask requires 14 TL operations and 15 XOR additions which results
in 14 × 5 + 15 = 85 clock cycles. For an entire AES encryption this results in
10× 16× 85 = 13600 clock cycles. Our method requires 1536 bytes in ROM and
no RAM, moreover, no pre-computation needs to be performed. In Tab. 1 the
costs of various masked and unmasked AES implementations are compared. Our
proposal is referred to as ”‘New”’ in Tab. 1.

Hence, the complexity of our proposal is lower in terms of memory and op-
erations for a single encryption. If only a single mask is used, our proposal is
about four times slower for a single encryption, however, our approach does not
require any RAM. Furthermore, it has been pointed out in [GT03] that the usage
of a single mask in AES may allow simple second-order DPA attacks, which can
be avoided by the usage of 16 different masks in each round. If encryptions are
repeated several times with the same set of 16 masks, our proposal will be slower
after four encryptions, but will always require less memory.

6 Power Analysis of the New Scheme

In order to confirm the security claims that we made in Sect. 4 and to assess the
practical security of our implementation, we performed DPA attacks on an AES

3 4 5 6 7 8 9 10

x 10
4

−30

−20

−10

0

10

20

30

40

Fig. 1. DPA of the AES with no active countermeasure

An Efficient Masking Scheme for AES Software Implementations 303

3 4 5 6 7 8 9 10

x 10
4

−30

−20

−10

0

10

20

30

40

Fig. 2. DPA of the AES with our new masked s-box scheme

implementation based on our new inversion scheme. The target hardware was
an 8-bit smart card. DPA attacks were performed in two independent experi-
ments. The first time we performed DPA attacks on the implementation with
the masking countermeasure switched off, i.e. all mask were fixed to zero. The
second time we performed DPA attacks on the implementation with the masking
countermeasure being active, i.e. all masks were randomly generated. In both ex-
periments 1000 random plaintexts were encrypted and the corresponding power
traces were measured using a digital oscilloscope with a sampling rate of 100
MSa/s and a current probe. The resulting differential traces are shown in Fig. 1
and Fig. 2.

It is obvious that the DPA of the unprotected AES implementation is suc-
cessful, since a distinct correlation peak is contained in Fig. 1 for the correct
key hypothesis. However, as shown in Fig. 2 the DPA of our new protected AES
scheme was not successful.

7 Conclusion

In this article we have presented a new masking scheme for software implemen-
tations of AES on 8-bit platforms. Our scheme is based on computing the inverse
operation, which is part of SubBytes, with composite-field arithmetic. All steps
that are needed throughout the computation are done via table look-ups and
XOR operations. We have proven that all intermediate masked values that oc-
cur during the computation are independent from unmasked intermediate values.
We have confirmed our theoretical proof with actually performed DPA attacks.
Our scheme is even secure when glitches in the underlying CMOS circuit occur
because it only uses table look-ups and XOR operations. The strong point of
our scheme is based on the fact that it is possible to use different masks for all
16 SubBytes operations with no RAM requirements. We believe that this is im-
portant, since RAM is generally very sparse on embedded devices such as smart

304 E. Oswald and K. Schramm

cards. Hence, our scheme provides a nice tradeoff between memory requirements
and speed and seems to be well suited for small platforms.

Acknowledgements

We would like to thank Andreas Krügersen for implementing the new AES in-
version scheme in assembly on the smart card.

References

[ABG04] Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin. Two Power Anal-
ysis Attacks against One-Mask Methods. In Bimal K. Roy and Willi
Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017
of Lecture Notes in Computer Science, pages 332–347. Springer, 2004.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES
and AES, Secure against Some Attacks. In Çetin Kaya Koç, David Nac-
cache, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2001, Third International Workshop, Paris, France, May
14-16, 2001, Proceedings, volume 2162 of Lecture Notes in Computer Sci-
ence, pages 309–318. Springer, 2001.

[BGK05] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably Secure
Masking of AES. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, 11th International Workshop, SAC 2004,
Waterloo, Canada, August 9-10, 2004, Revised Selected Papers, volume
3357 of Lecture Notes in Computer Science, pages 69–83. Springer, 2005.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pages 398–412. Springer, 1999.

[GT03] Jovan D. Golić and Christophe Tymen. Multiplicative Masking and Power
Analysis of AES. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems – CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August
13-15, 2002, Revised Papers, volume 2535 of Lecture Notes in Computer
Science, pages 198–212. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Anal-
ysis. In Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel
Leakage of Masked CMOS Gates. In Alfred Menezes, editor, Topics in
Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Con-
ference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceed-
ings, volume 3376 of Lecture Notes in Computer Science, pages 351–365.
Springer, 2005.

An Efficient Masking Scheme for AES Software Implementations 305

[Nat99] National Institute of Standards and Technology (NIST). FIPS-46-
3: Data Encryption Standard, October 1999. Available online at
http://www.itl.nist.gov/fipspubs/.

[Nat01] National Institute of Standards and Technology (NIST). FIPS-197:
Advanced Encryption Standard, November 2001. Available online at
http://www.itl.nist.gov/fipspubs/.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rij-
men. A Side-Channel Analysis Resistant Description of the AES S-box. In
Helena Handschuh and Henri Gilbert, editors, Fast Software Encryption,
12th International Workshop, FSE 2005, Paris, France, February 21-23,
2005, Proceedings, volume 3557 of Lecture Notes in Computer Science,
pages 425–435. Springer, 2005. to appear.

[SSI04] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. Random Switch-
ing Logic: A Countermeasure against DPA based on Transition Proba-
bility. Cryptology ePrint Archive (http://eprint.iacr.org/), Report
2004/346, 2004.

[TK04] Elena Trichina and Lesya Korkishko. Secure and efficient aes software
implementation for smart cards. In Chae Hoon Lim and Moti Yung,
editors, Information Security Applications, 5th International Workshop,
WISA 2004, Jeju Island, Korea, August 23-25, 2004, Revised Selected Pa-
pers, volume 3325 of Lecture Notes in Computer Science, pages 425–439.
Springer, 2004.

[TSG03] Elena Trichina, Domenico De Seta, and Lucia Germani. Simplified Adap-
tive Multiplicative Masking for AES. In Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2535 of
Lecture Notes in Computer Science, pages 187–197. Springer, 2003.

[WOL02] Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger. An
ASIC implementation of the AES SBoxes. In Bart Preneel, editor, Topics
in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA
Conference 2002, San Jose, CA, USA, February 18-22, 2002, volume 2271
of Lecture Notes in Computer Science, pages 67–78. Springer, 2002.

The information in this document reflects only the authors’ views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Secure Multi-attribute Procurement Auction

Koutarou Suzuki1 and Makoto Yokoo2

1 NTT Information Sharing Platform Laboratories, NTT Corporation,
1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847, Japan

suzuki.koutarou@lab.ntt.co.jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
lang.is.kyushu-u.ac.jp/∼yokoo/

yokoo@is.kyushu-u.ac.jp

Abstract. In this paper, we develop a secure multi-attribute procure-
ment auction, in which a sales item is defined by several attributes called
quality, the buyer is the auctioneer (e.g., a government), and the sellers
are the bidders. Our goal is to develop a protocol in which acting hon-
estly is a dominant strategy for sellers and that does not leak the true
cost of the sellers, which is highly classified information that the sellers
want to keep private. We first present a Vickrey-type protocol that can
be used for multi-attribute procurement auctions. Next, we show how
this protocol can be executed securely.

Keywords: Procurement auction, Vickrey auction, security, privacy.

1 Introduction

Internet auctions have become an integral part of Electronic Commerce and
a promising field for the application of game-theory and information security
technologies. Also, electronic bidding via networks has become popular for pro-
curement auctions. Since these auction procedures can be efficiently carried out,
they have been introduced very rapidly and will be used more widely in the
future.

However, the widespread research on auctions has focused mostly on models in
which price is the unique strategic dimension. However, in many situations, it is
necessary to conduct negotiations on multiple attributes of a deal. For example,
in the case of allocating a task, the attributes of the deal may include starting
time, ending deadline, accuracy level, etc. A service can be characterized by its
quality, supply time, and risk involved, in case the service is not supplied on
time. Also, a product can be characterized by several attributes, such as size,
weight, supply date, etc.

In this paper, we investigate a model of multi-attribute procurement auctions
that can handle such situations. In this model, a sales item is defined by several
attributes called quality, the buyer is the auctioneer (e.g., a government), and
the sellers are the bidders.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 306–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Secure Multi-attribute Procurement Auction 307

We assume that the preference/type of the buyer is known and set our goal
to develop a protocol in which acting honestly is a dominant strategy for sellers.
This assumption is natural for the case of procurement by a government. Except
for this assumption, our model is quite general. For example, the quality of a task
can have arbitrary dimensions. Also, there is no restriction on the cost function
of the seller.

We first present a Vickrey-type protocol that can be used for multi-attribute
procurement auctions. In this protocol, acting honestly is a dominant strategy
for sellers and the resulting allocation is Pareto efficient. Since truth-telling is
a dominant strategy in our procurement auction, bids contain highly sensitive
information, such as the true cost of sellers, which they want to keep private
as much as possible. Thus, secrecy of the bids is required. We then show how
this protocol can be executed securely, i.e., the secure protocol does not leak the
true cost of the winner. The proposed protocol is the first procurement auction
protocol that achieves the security of bids.

The rest of this paper is organized as follows. We show related works in
section 2. We describe our auction model in section 3. We apply a Vickrey-type
protocol to the problem in section 4. We show how to execute this protocol
securely in section 5. We present our conclusions in section 6.

2 Related Works

So far, very little theoretical work has been conducted on multi-attribute auc-
tions. One notable exception is the work of Che [7], where bidders bid on both
price and quality, and bids are evaluated by a scoring rule designed by the buyer.
In addition, first score and second score sealed bid auctions have been proposed.
However, the quality was assumed to be one-dimensional.

Protocols and strategies of a multi-attribute English auction were proposed
in [9], and strategies with a deadline were studied in [10]. In these studies, the
value of the quality is extended to two dimensions.

In these works, the quality is assumed to have one or two dimensions, and the
possible types of cost functions of bidders are limited. On the other hand, these
works consider the incentive issues of the buyer, while we assume that the type of
the buyer is public. Also, these works propose non-direct revelation mechanisms,
which require less exposure of private information than direct revelation proto-
cols. In this paper, we use a direct revelation protocol but the proposed protocol
can keep the private information of the bidders hidden by utilizing information
security techniques.

Suyama and Yokoo [19] have developed combinatorial multi-attribute pro-
curement auctions, in which multiple correlated tasks are assigned. However,
privacy/security issues were not considered. In this paper, we concentrate on a
special case in which only a single task is assigned.

Bichler [3] carried out an experimental analysis of multi-attribute auctions. He
showed that the utility scores achieved in multi-attribute auctions were higher
than those of single-attribute auctions by the experiment.

308 K. Suzuki and M. Yokoo

To keep the bidding prices secret, many works have been carried out for secure
sealed-bid auctions[1, 2, 4, 5, 11, 13, 14, 15, 16, 17, 18, 20, 21, 23]. However, as far as
the authors are aware, there is no work on secure multi-attribute procurement
auctions. Our proposed protocols are basically based on the M+1-st price auction
in [1] but it is modified to handle multi-attribute procurement auctions.

3 Model

In this section, we describe the model of a multi-attribute procurement auction.
This model is a special case of [19], in which multiple tasks are assigned.

– There exists a single buyer (auctioneer) 0, a set of sellers (bidders) N =
{1, 2, . . . , n}, and a task to be assigned to a seller. (For instance, in procure-
ment by a government, a single buyer is the government, sellers are suppliers,
and a task is public construction, supply of convenience goods, etc.)

– For the task, quality q ∈ Q is defined. We assume there is a special quality
q0 ∈ Q, which represents the fact that the task is not performed at all.
(For instance, q is a vector {q1, q2, ...}. Each element represents the ending
deadline, accuracy level, etc.)

– Each seller i privately observes his type θi, which is drawn from set Θ.
The cost of seller i for performing the task when the achieved quality is q
is represented as c(θi, q). We assume c is normalized by c(θi, q0) = 0. (The
private cost function c(θi, q) represents the real cost of seller i for performing
the task with quality q. This is a highly sensitive information for the seller.)

– The gross utility of buyer 0 when the obtained quality is q is represented
as V (q). We assume V is normalized by V (q0) = 0. Also, we assume V is
public. (The gross utility V (q) represents the utility of the buyer without
considering the payment. In a procurement auction by a government, it is
natural to assume the gross utility is public.)

– The payment from the buyer to the winning seller i is represented as pi.
We assume each participant’s utility is quasi-linear, i.e., for winning seller
i, his utility is represented as pi − c(θi, q). Also, for the buyer, her utility is
V (q) − pi. (Such a utility is called quasi-linear since it can be decomposed
into a linear part (money) and a non-linear part.)

Please note that although only one parameter q is used to represent the quality
of the task, it does not mean our model handles only one-dimensional quality.
We don’t assume q is one-dimensional. For example, q can be a vector of multiple
attributes.

An auction protocol is individually rational if no seller suffers any loss in a
dominant-strategy equilibrium, i.e., the cost never exceeds the payment.
In a private value auction, where each seller knows the exact cost of performing
a task with a certain quality, individual rationality is indispensable; no seller
wants to participate in an auction where he might be paid less than he would
spend in performing the task. Therefore, in this paper, we restrict our attention
to individually rational protocols.

Secure Multi-attribute Procurement Auction 309

We say an auction protocol is Pareto efficient when the sum of all participants’
utilities (including that of the buyer), i.e., the social surplus, is maximized in
a dominant-strategy equilibrium. In our model, the obtained social surplus is
represented as V (q)− c(θi, q).

We assume that there is no collusion/bid-rigging. This is a standard assump-
tion in most of the auction research.

4 Vickrey-Type Protocol

In this section, we develop a protocol that is based on the well-known Vick-
rey auction protocol [22]. We can consider this protocol to be a special case
of the Vickrey-Clarke-Groves-based protocol presented in [19]. However, in the
protocol described in [19], a seller needs to fully expose his private information
θi. Our protocol, on the other hand, avoids the full exposure of types. By this
modification, the protocol becomes easier to implement securely.

4.1 Basic Ideas

For a Vickrey auction in a standard auction setting, where multiple buyers and
a single seller exist, we assume that seller i has a type θi, which determines
the valuation v(θi) of the auctioned good. Each seller declares vi, which can be
different from his true valuation v(θi). The seller i∗ with the highest valuation
v1st wins the good, and pays the amount that is equal to the second-highest
valuation v2nd.

The intuition behind the Vickrey auction is that, the winner needs to com-
pensate the decrease of the social surplus caused by his participation, i.e., if
the winner i∗ did not participate the auction, the seller with the second-highest
valuation v2nd would have won. In this case, the social surplus except for i∗

is equal to v2nd. If the winner does participate, he takes the good and the
social surplus except for i∗ is 0. Therefore, the winner i∗ is required to pay
v2nd − 0 = v2nd.

In our model, since the bidders are sellers, a seller can increase the social
surplus except for the seller, by performing the task at lower cost. In our newly
developed protocol, the allocation of the task and its quality is determined so
that the obtained social surplus is maximized. Accordingly, the winner is awarded
with the amount that is equal to the increase of the social surplus, except for
the winner, caused by the participation of the winner.

4.2 Details of the Protocol

The proposed Vickrey-type protocol is described as follows.

– Each seller i submits a pair (qi, bi), which means that if he performs the
specified task with quality qi, the resulting social surplus is bi. If the seller
acts honestly, he should choose qi = argmaxq V (q)−c(θi, q) and bi = V (qi)−
c(θi, qi).

310 K. Suzuki and M. Yokoo

– Buyer 0 chooses i∗ so that bi is maximized, i.e., i∗ = argmaxi bi. Buyer 0
allocates the task to seller i∗ with quality qi∗ .

– The payment pi∗ to seller i∗ is defined as: pi∗ = V (qi∗)− b2nd, where b2nd =
maxj �=i∗ bj .

Please note that if all sellers act honestly, payment pi∗ is equal to V (q∗) −
[V (q∗∼i)−c(θj∗ , q∗∼i)], where (q∗∼i, j

∗) = arg maxj �=i∗,q V (q)−c(θ′j , q), i.e., (q∗∼i, j
∗)

is the second-best choice when the task is not allocated to seller i∗. We can
assume that the payment to seller i∗ is equal to the increase of the social surplus,
except for i∗, caused by the participation of i∗.

Example 1. Let us assume q is one-dimensional. Assume V (q) =
√

q. There are
two sellers 1 and 2. The cost of seller 1, i.e., c(θ1, q) is given by q/4, and the cost
of seller 2, i.e., c(θ2, q) is given by q/2.

Clearly, seller 1 is more efficient than seller 2. The buyer allocates the task
to seller 1 with quality 4. Then, the resulting social surplus is 1. The second-
best choice (excluding seller 1) is to allocate the task to seller 2 with quality 1.
Therefore, the payment is given by 2− (1− 1/2) = 3/2. The utility of seller 1 is
3/2− 1 = 1/2. The utility of the buyer is 2− 3/2 = 1/2.

4.3 Characteristics of the Protocol

The following theorem holds.

Theorem 1. In the multi-attribute procurement auction protocol, for each seller
i, acting honestly, i.e., reporting qi = arg maxq V (q)− c(θi, q) and bi = V (qi)−
c(θi, qi), is a dominant strategy.

Proof: We first show that for winner i∗, his utility is maximized when he acts
honestly. i.e., declaring qi = argmaxq V (q)− c(θi, q) and bi = V (qi)− c(θi, qi).

From the assumption that a seller’s utility is quasi-linear, the utility of seller
i∗ is represented as follows:

pi∗ − c(θi∗ , qi∗) = V (qi∗)− b2nd − c(θi∗ , qi∗)
= [V (qi∗)− c(θi∗ , qi∗)]− b2nd

The second term is determined independently of i∗’s declaration. Therefore,
seller i∗ can maximize his utility by maximizing the first term. Clearly, the first
term, V (qi∗) − c(θi∗ , qi∗) is maximized by choosing qi∗ as maxq V (q) − c(θi, q),
i.e., acting honestly. The declaration of bi∗ does not affect the utility of i∗ as
long as the seller wins. Therefore, seller i∗ has no incentive to lie about bi∗ .
Therefore, for i∗, acting honestly, i.e., declaring qi = argmaxq V (q) − c(θi, q)
and bi = V (qi)− c(θi, qi), is the best strategy.

Next, we show that if j �= i∗ cannot win when j acts honestly, i.e., by declaring
qi = argmaxq V (q) − c(θi, q) and bi = V (qi) − c(θi, qi), then he cannot obtain
a positive utility anyway. Let us assume that j declares (b′j , q

′
j) to be a winner.

Then, the second best bid becomes bi∗ , where bj ≤ bi∗ ≤ b′j.

Secure Multi-attribute Procurement Auction 311

The utility of j is:

pj − c(θj , q
′
j) = V (q′j)− bi∗ − c(θj , q

′
j)

= [V (q′j)− c(θj , q
′
j)]− bi∗

Since bj = maxq V (q) − c(θi, q), the first term is smaller than (or equal to)
bj. Also, since we assume bj =< bi∗ , the utility of seller j cannot be positive.
Therefore, seller j has no incentive to lie. The above argument shows that in
this protocol, acting honestly is a dominant strategy. �

Furthermore, the following theorem holds.

Theorem 2. The multi-attribute procurement auction protocol is individually
rational for both the sellers and the buyer.

Proof: If a seller cannot win, his utility is 0. For winner i∗, his utility is given as:

[V (qi∗)− c(θi∗ , qi∗)]− b2nd = bi∗ − b2nd

Clearly, the first term is larger than the second term, so the utility of i∗ is
non-negative.

Furthermore, the utility of the buyer is given as:

V (qi∗)− pi∗ = V (qi∗)− [V (qi∗)− b2nd]
= b2nd

Each seller j can choose to perform a task with quality q0, i.e., not performing the
task. In this case, V (q0) − c(θj , q0) = 0 ≤ b2nd. Therefore, b2nd is non-negative.
Therefore, the utility of the buyer is non-negative. �

Furthermore, the following theorem holds.

Theorem 3. The multi-attribute procurement auction protocol is Pareto effi-
cient in the dominant strategy equilibrium where each agent acts honestly.

Proof: From Theorem 1, each seller acts honestly in a dominant strategy equi-
librium. This protocol chooses the allocation and the quality so that the social
surplus is maximized according to the declared (qi, bi), i.e., bi∗ is chosen as
argmaxi maxq V (q) − c(θi, q). Therefore, if each seller acts honestly, the result
of this protocol is Pareto efficient. �

5 Secure Protocol

In this section, we provide a cryptographic protocol based on [1] to realize
our procurement auction. We provide security requirement of auction proto-
col. We summarize cryptographic tools used in our protocol. We then propose
our secure procurement auction protocol, discuss security and efficiency of our
protocol.

312 K. Suzuki and M. Yokoo

5.1 Security Requirement of Auction

To achieve a fair auction, secure procurement auction must satisfy requirements:
secrecy of bids, and public verifiability.

Since truth telling is a dominant strategy in our procurement auction, bids
contain an information that the sellers want to keep private, e.g., the true cost
of the sellers. Thus, secrecy of bids are required.

Secrecy of Bids: All bid information except auction result, i.e., winning seller
and his payment, must be kept secret, even from the buyer.

Due to the secrecy requirement, only the result of the auction can be known.
Accordingly, it is necessary to convince all sellers that anyone can verify the
correctness of the result of the auction.

Public Verifiability: Anyone must be able to verify the correctness of the
result of the auction.

5.2 Cryptographic Tools

We summarize the cryptographic tools used in our protocol. We denote a ci-
phertext of ElGamal encryption with public key g, y = gx by E(m) = (G =
gr, M = myr), and decryption function by D. We use the proof of equality of
logarithms [6] and these proof of OR of statements [8]. By using the proofs, we
have the following verifiable encryption, decryption, powering, mix [1], and mix
and match [12] processes.

Proof of Encryption: We can prove that ciphertext E(m) = (G = gr, M =
myr) is an encryption of m without revealing the secret random r by proving
logg G = logy M/m.

Proof of Decryption: We can prove that plaintext m = M/Gx is the de-
cryption of E(m) = (G, M) without revealing the secret key x by proving
logG M/m = logg y.

Proof of Powering: We can prove that ciphertext E′(mr) = (G′ = Gr, M ′ =
M r) is a power of E(m) = (G, M) without revealing the secret random r by
proving logG G′ = logM M ′.

Verifiable Mix [1]: The publicly verifiable mix randomizes and permutes its
input ciphertexts without revealing the randomization and the permutation to
hide the correspondence between inputs and outputs; a proof of the correctness
of the mixing can be given.

First, we construct a publicly verifiable 2-input mix that randomizes and per-
mutes two inputs in a publicly verifiable manner. We can prove that ciphertext
E′(m) = (G′ = Ggr, M ′ = Myr) is a randomization of E(m) = (G, M) without
revealing the secret random r by proving logg G′/G = logy M ′/M . By combin-
ing this with the OR proof, we can prove that the 2-input mix randomizes and
swaps OR randomizes and does not swap two inputs. We then can construct a
publicly verifiable n-input mix by combining n log2 n−n+1 2-input mixes based
on Waksman’s permutation network.

Secure Multi-attribute Procurement Auction 313

Mix and Match [12]: By using mix and match, one can examine whether the
decryption D(c) of ciphertext c belongs to a specific set S = {p1, p2, . . . , pn} of
plaintexts.

First, we construct n ciphertexts ci = c/E(pi) (0 ≤ i ≤ n). We then take the
power cri

i of them using a secret random factor ri, mix them, and decrypt the
mixed n ciphertexts in a publicly verifiable manner. If there exists one plaintext
1, we are convinced that D(c) ∈ S. If there exists no plaintext 1, we are convinced
that D(c) �∈ S.

5.3 Proposed Secure Procurement Auction

We securely realize our procurement auction based on the M+1-st price auction
in [1].

There are n sellers 1, · · · , n, a single buyer 0, and trusted authority T . Buyer
0 plays the role of a bulletin board. Trusted authority T generates a secret key
and a public key in the preparation phase. In the opening phase, it receives
ciphertexts from buyer 0, performs mix and match, and decrypts them.

Notice that trusted authority T can be built in a distributed way, to make
it trustful in a threshold sense. Plural servers generate secret and public key in
threshold manner in the preparation phase, and decrypt a ciphertext in threshold
manner in the opening phase. This threshold implementation prevents authority
T from illegal decryption.

For simplicity, we assume there are no ties. If there exists a tie, then one seller
is randomly chosen as the winner, but he needs to perform the task without
making any profit.

Preparation: Trusted authority T generates a secret key and a public key
for ElGamal encryption E, and publishes the public key. He also publishes a
generator z of the cyclic group used for encryption.

Buyer 0 publishes a price list P = {1, 2, · · · , p}, a quality list Q = {1, 2, · · · , q}
(hereafter, we assume Q is finite), for the auctioned task, and her gross utility
function V (·).

Each seller i obtains his private cost function c(θi, ·), and keeps it private.

Bidding: Each seller i decides his quality qi = argmaxq V (q)− c(θi, q) ∈ Q and
bi = V (qi)− c(θi, qi) ∈ P .

He computes encrypted vector (c′1,i, ..., c
′
p,i) of bi where

c′j,i =
{

E(z) if j = bi

E(1) if j �= bi
.

He then creates proof of correctness of the encrypted vector, i.e., “D(c′1,i · · · c′p,i)
= z AND (D(c′1,i) = z OR D(c′1,i) = 1) AND...AND (D(c′p,i) = z OR D(c′p,i) =
1)” using the homomorphic property of E, the proof of equality of logarithms
[6], and the proof of OR of statements [8]. (This can be done with cost O(p).
D(c′1,i · · · c′p,i) = z implies product of all plaintexts is equal to z because of
homomorphic property of E. D(c′j,i) = z OR D(c′j,i) = 1 implies plaintext of c′j,i

314 K. Suzuki and M. Yokoo

is equal to z or 1. So, we are convinced that exact one plaintext is equal to z
and all other plaintexts are equal to 1.) He then publishes the encrypted vector
and the proof.

He computes the encryption ei = E(qi) of his quality qi. He then creates
proof of correctness “D(ei) ∈ Q” of the encryption, i.e., “D(ei) = 1 OR...OR
D(ei) = q”, using the proof of equality of logarithms [6], and the proof of OR
of statements [8]. (This can be done with cost O(q).) He then publishes the
encryption and the proof.

Opening: Buyer 0 publicly computes cn,i := c′n,i and cj,i := cj+1,i · c′j,i for
j = n− 1, n− 2, ..., 1. Notice that by the homomorphic property now we have

cj,i =
{

E(z) if j ≤ bi

E(1) if bi < j
.

He publicly computes products cj = cj,1 · · · cj,n (1 ≤ j ≤ p). From the homo-
morphic property, we have the encrypted vector (c1, ..., cp) where

cj = E(zn(j)), n(j) = #{i | j ≤ bi}.
By applying the mix and match technique [12] to cj , we can examine whether

n(j) ≤ 2 or not, i.e., we can examine whether D(cj) ∈ {1, z, z2} or not. To
determine the 2-nd maximal b2nd = maxj �=i∗ bj, i.e., b2nd s.t. n(b2nd) ≥ 2 and
n(b2nd + 1) ≤ 1, we perform a binary search using the examination by mix and
match; buyer 0 sends cj to trusted authority T for �log p� rounds, and trusted
authority T performs mix and match.

To determine winning seller i∗, we decrypt cb2nd+1,i (1 ≤ i ≤ n) and find
winning seller i∗ with D(cb2nd+1,i∗) = z; buyer 0 sends cb2nd+1,i (1 ≤ i ≤ n) to
trusted authority T , and trusted authority T decrypts them.

To determine qi∗ of the winning seller i∗, we decrypt E(qi∗); buyer 0 sends
E(qi∗) to trusted authority T , and trusted authority T decrypts it.

Finally, buyer 0 publishes the payment pi∗ = V (qi∗) − b2nd where V is the
public utility of buyer 0, and the winning seller i∗.

5.4 Security

We discuss security of the proposed protocol.

Secrecy of Bids: The protocol leaks no information except maxj �=i∗ bj , i
∗, qi∗ .

In bidding phase, bidding price is encoded into the encrypted vector that leaks
no information, since the underlying encryption scheme is indistinguishable. In
opening phase, mix and match process leaks whether D(cj) ∈ {1, z, z2} or not,
however, this provides no more information than maxj �=i∗ bj . Illegal decryption
by authority T is prevented by distributed decryption.

The protocol leaks information maxj �=i∗ bj and qi∗ besides auction result
i∗, V (qi∗)−maxj �=i∗ bj . However, this is not serious, since the true costs of 1-st
and 2-nd highest seller, these are what they want to conceal, cannot be found

Secure Multi-attribute Procurement Auction 315

from the leaked information. Actually, to compute cost c(θi, qi) of the highest
seller i, we need bi, and to compute cost c(θj , qj) of the 2-nd highest seller j, we
need qj .

Public Verifiability: The protocol is publicly verifiable, since all steps, i.e.,
encryption, mix and match, and decryption, are publicly verifiable.

Moreover, the protocol is robust, since invalid bid can be detected because
of public verifiability, and even if some sellers do not send their bids, buyer can
compute the auction result correctly.

In the bidding step, the malicious seller can bid at any price relative to the
bidding price of other seller. He can construct a encrypted vector of any price by
shifting and randomizing another seller’s encrypted vector. To avoid this, each
seller commits the whole encrypted vector and its poof, and opens it after all
sellers commit.

5.5 Efficiency

We discuss efficiency of the proposed protocol.

Communication and Computational Complexity: The communication
and computational complexity of buyer 0 is O(n(p+q)), because of n sellers, the
encrypted vector and its proof of length p, and proof of correctness of encrypted
quality of length q. The communication and computational complexity of au-
thority T is O(n + log p). The communication and computational complexity of
seller i is O(p + q).

It follows that the protocol is efficient for large n, but it is costly for large
log p or large log q.

Round Complexity: The round complexity of buyer 0 is O(n + log p), since
there are n sellers and buyer 0 and authority T must interact for �log p� rounds.
The round complexity of authority T is O(log p). The round complexity of seller
i is 1, this means that the proposed protocol achieves “bid and go” concept.

It follows that the protocol is efficient for large n, large log p, and large log q
from the viewpoint of round complexity.

6 Conclusions

In this paper, we investigated a secure multi-attribute procurement auction in
which each sales item is defined by several attributes, called quality, the buyer
is the auctioneer (e.g., a government), and the sellers are the bidders.

We first developed a Vickrey-type protocol in which acting honestly is a domi-
nant strategy for sellers based on [19]. However, in the protocol described in [19],
a seller needs to fully expose his private information θi. Our protocol, on the
other hand, avoids the full exposure of types. By this modification, the protocol
becomes easier to implement securely.

We then constructed secure protocol of the multi-attribute procurement auc-
tion that does not leak the true cost of the winner, which is highly classified

316 K. Suzuki and M. Yokoo

information that the winner wants to keep private. We provide cryptographic
protocol based on [1] to realize our procurement auction.

Acknowledgments

The authors would like to thank the anonymous referees for valuable comments.

References

1. Masayuki Abe and Koutarou Suzuki. M+1-st price auction using homomorphic
encryption. In Proceedings of Public Key Cryptography 2002, pages 115–124, 2002.

2. Olivier Baudron and Jacques Stern. Non-interactive private auctions. In Pro-
ceedings of Fifth International Financial Cryptography Conference (FC-01), pages
364–378, 2001.

3. Martin Bichler. An experimental analysis of multi-attribute auction. Decision
Support Systems, 29(3):249–268, 2000.

4. Felix Brandt. Fully private auctions in a constant number of rounds. In Pro-
ceedings of Seventh International Financial Cryptography Conference (FC-2003),
pages 223–238, 2003.

5. Christian Cachin. Efficient private bidding and auctions with an oblivious third
party. In Proceedings of 6th ACM Conference on Computer and Communications
Security, pages 120–127, 1999.

6. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Pro-
ceedings of CRYPTO 1992, pages 89–105, 1992.

7. Yeon-Koo Che. Design cometition through multidimensional auctions. RAND
Journal of Economics, 24(4):668–680, 1993.

8. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Proceedings of CRYPTO
1994, pages 174–187, 1994.

9. Esther David, Rina Azoulay-Schwartz, and Sarit Kraus. Protocols and Strategies
for Automated Multi-Attribute Auctions. In International Joint Conference on
Autonomous Agents and Multiagent systems, pages 77–85, 2002.

10. Esther David, Rina Azoulay-Schwartz, and Sarit Kraus. Bidders’ Strategy for
Multi-Attribute Sequential English Auction with a Deadline. In The Second Inter-
national Joint Conference on Autonomous Agents and Multiagent systems, pages
457–464, 2003.

11. Michael Harkavy, J. D. Tygar, and Hiroaki Kikuchi. Electronic auctions with
private bids. In Proceedings of Third USENIX Workshop on Electronic Commerce,
pages 61–74, 1998.

12. Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via
ciphertexts. In Proceedings of ASIACRYPT 2000, pages 162–177, 2000.

13. Ari Juels and Michael Szydlo. A two-server, sealed-bid auction protocol. In Pro-
ceedings of Sixth International Financial Cryptography Conference (FC-02), pages
72–86, 2002.

14. Hiroaki Kikuchi, Michael Harkavy, and J. D. Tygar. Multi-round anonymous auc-
tion protocols. In Proceedings of first IEEE Workshop on Dependable and Real-
Time E-Commerce Systems, pages 62–69, 1998.

Secure Multi-attribute Procurement Auction 317

15. Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey auctions with-
out threshold trust. In Proceedings of Sixth International Financial Cryptography
Conference (FC-02), pages 87–101, 2002.

16. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and
mechanism design. In Proceedings of the First ACM Conference on Electronic
Commerce (EC-99), pages 129–139, 1999.

17. Kazue Sako. Universally verifiable auction protocol which hides losing bids. In
Proceedings of Public Key Cryptography 2000, pages 35–39, 2000.

18. Stuart G. Stubblebine and Paul F. Syverson. Fair on-line auctions without spe-
cial trusted parties. In Proceedings of Third International Financial Cryptography
Conference (FC-99), pages 230–240, 1999.

19. Takayuki Suyama and Makoto Yokoo. Strategy/false-name proof protocols for
combinatorial multi-attribute procurement auction. In Proceedings of the Third
International joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2004), 2004.

20. Koutarou Suzuki and Makoto Yokoo. Secure combinatorial auctions by dynamic
programming with polynomial secret sharing. In Proceedings of Sixth International
Financial Cryptography Conference (FC-02), pages 44–56, 2002.

21. Koutarou Suzuki and Makoto Yokoo. Secure Generalized Vickrey Auction using
homomorphic encryption. In Proceedings of Seventh International Financial Cryp-
tography Conference (FC-03), pages 239–249, 2003.

22. William Vickrey. Counter speculation, auctions, and competitive sealed tenders.
Journal of Finance, 16:8–37, 1961.

23. Makoto Yokoo and Koutarou Suzuki. Secure multi-agent dynamic programming
based on homomorphic encryption and its application to combinatorial auctions.
In Proceedings of the First International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), pages 112–119, 2002.

Oblivious Conjunctive Keyword Search�

Hyun Sook Rhee, Jin Wook Byun, Dong Hoon Lee, and Jongin Lim

Center for Information Security Technologies (CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

{math33, byunstar, donghlee, jilim}@korea.ac.kr

Abstract. We study the problem of keyword search in which a server
contains various multimedia contents and a user of server wishes to re-
trieve some multimedia item containing specific keywords without re-
vealing to the server which item it is. Recently, Ogata and Kurosawa
introduced an interesting keyword search scheme called oblivious key-
word search by using the notion of oblivious transfer. However, only one
keyword can be searched in each query, hence the scheme cannot pro-
vide a conjunctive keyword search which finds items containing each of
several keywords. In this paper, we firstly design a conjunctive keyword
search by using the oblivious transfer, and present oblivious conjunc-
tive keyword search (for short, OCKS). We prove that OCKS protocol
is secure under the intractability of RSA known target inversion problem.

Keywords: Conjunctive Keyword Search, Storage system, Oblivious
Transfer, Anonymity, Privacy.

1 Introduction

As the amount of information to be stored and managed on the Internet rapidly
increases, the importance of storage system such as a database is increasingly
growing. As a result, ensuring privacy for the stored data on the storage system
is becoming one of the most urgent challenges in database research and industry.

Today, there are two important privacy issues in database research. The first
important issue is that a user needs to be assured that his data stored on the
database is protected against data thefts from outsiders. To simply resolve this
problem, we may implement a cryptographic encryption module in the database
management system (DBMS), and the module in the DBMS performs encryp-
tions and decryptions for the stored data. Actually, the most real database sys-
tems such as Oracle 8i and MS Access provide themselves a cryptographic mod-
ule in their DBMS, hence the first issue can be resolved without any additional
implementation costs such as private key management module certainly.

The second issue is that the data need to be protected even from an insider
system manager such as a system administrator of database if the database sys-
tem cannot be trusted. When the storage system is not trustworthy, users may
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 318–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Oblivious Conjunctive Keyword Search 319

ensure the privacy of their data by storing it encrypted. The users of system
should securely manage its encryption keys without revealing to the insider sys-
tem manager. Originally, storing data in an encrypted form was proposed in
Blaze’s Cryptographic File System (CFS) [2], and expanded on later systems
[2, 8, 23, 13]. If data are stored in an encrypted form, it can be protected from
leaking by the server because it does not know the decryption key. In addition,
there is no need to encrypt data again for confidentiality when it is sent on the
public network. However, secure encryption makes documents look random, and
unreadable to anyone other than the users holding the decryption keys, hence the
server is unable to determine which encrypted documents contain specific key-
words. To resolve this problem, many efficient search protocols over encrypted
data have been suggested in various scenarios [4, 7, 10, 12, 17, 18, 21, 22].

In this paper, we study the problem of keyword search in a setting where a
database supplier uploads data onto its database. Hence a system manager is
also a database supplier and has no motivation to be an inside attacker. For
example, consider a setting of keyword search where a server itself contains vari-
ous multimedia contents and a user of server wishes to retrieve some multimedia
item containing specific keywords without revealing to the server which item it
is. Recently, in this setting, Ogata and Kurosawa first introduced an interesting
keyword search scheme called oblivious keyword search (for short, OKS) by us-
ing the notion of oblivious transfer (for short, OT) [17]. Originally, the notion
of OT was introduced by Rabin [20], and have been subsequently defined in
different forms [9].1 The OT protocol is a two party protocol between a sender
S and a receiver R. S has two bits, and R wishes to get one of them satisfying
the followings properties: (1) S does not know which bit R obtained and (2) R
does not know any information about the bit that he did not obtain. The OKS
protocol is also a two party protocol between a database supplier T and a user
U based on the above properties. By the property of (1), the user U is able to
search and retrieve the data containing keyword w chosen by user U without
revealing the keyword w to T . On the other hand, the user U learns only the
data containing keyword by the property (2).

1.1 Our Contributions

As mentioned by Ogata and Kurosawa themselves, the number of keywords for
searching in their OKS protocol is restricted by only one. Hence a user cannot use
boolean combinations of keywords, which should be an available functionality.
One may think that a conjunctive keyword search can be derived from the mul-
tiple executions of only single keyword search scheme. In this case, however, the
server should find all documents containing each individual keyword by using the
single keyword search, check the intersection set of all documents, then return
the results to the user. This approach requires the server high computational cost
and redundancy due to duplicated comparisons and search, hence the design of
conjunctive keyword search ensuring efficiency and security is never an easy task.

1 All these OT variants were shown to be equivalent to one another [9, 5].

320 H.S. Rhee et al.

In this paper, we propose an oblivious conjunctive keyword search proto-
col(OCKS) by using the notion of OT. First, we present a new security model
for OCKS, and define its security for OCKS. We then prove that our suggested
OCKS protocol is secure if the RSA known target inversion problem [6] is hard.

1.2 Organization

This paper is organized as follows. In Section 2, we overview an OKS protocol
presented by Ogata and Kurosawa. In Section 3, we describe our security model,
security definition and computational assumption for constructing OCKS pro-
tocol. In Section 4, we present an OCKS protocol and show that the OCKS
protocol is secure based on the hardness of RSA known target inversion prob-
lem. We conclude in Section 5.

2 OKS Protocol

Now we review the OKS protocol proposed by Ogata and Kurosawa [17], which
is a building block of the proposed scheme.

2.1 Description of k-out-of-n OKS

The OKS protocol is based on the k-out-of-n OT protocol (OKSn
k) suggested in

[17]. The OKSn
k protocol consists of database supplier T and a user U . Let W be

the set of keywords and l be a security parameter. The OKSn
k protocol consists

of a commit phase and a transfer phase.
In the commit phase, T commits n data B1, ..., Bn such that

Bi = (wi, ci)

where wi ∈ W and ci is an encrypted data. We define the search result for a
keyword w by

Search(w)= {ci |wi = w for some i }
The transfer phase consists of k subphases. At each subphase j (1 ≤ j ≤ k), U
can choose a keyword w∗

j ∈ W adaptively and learn Search(w∗
j). However, T

should gain no information on w∗
1 , w∗

2 , ..., w∗
k and U should not learn anything

except the result of Search(w∗
j). Let G be a pseudo-random generator and H

be a cryptographic secure hash function. The OKSn
k protocol works as follows.

• [Commitment Phase]. T generates a public key (N, e) and a secret key d
of RSA. T publishes (N, e). Next, T computes Ci = {Ki, Ei} for 1 ≤ i ≤ n,
as follows.

Ci =
{

Ki = (H(wi))d mod N
Ei = (G(wi‖Ki‖i))⊕ (0l‖ci)

where ‖ denotes concatenation and 0l is a l-bit string with 0’s. T sends
E1, ..., En to U .

Oblivious Conjunctive Keyword Search 321

• [Transfer Subphase]. At each transfer subphase j (1 ≤ j ≤ k), U performs
the followings.
(1) U chooses a keyword w∗

j .
(2) U chooses a random element r and computes Y where,

Y = reH(w∗
j) mod N.

U sends Y to T .
(3) T computes K ′ = Y d mod N and sends it to U .
(4) U computes K as follows.

K = K
′
/r = H(w∗

j)d mod N.

For i = 1, ..., n, U computes G(w∗
j ‖K‖i), and gets the following.

(ai‖bi) = Ei ⊕G(w∗
j ‖K‖i)

If ai = 0l (1 ≤ i ≤ n) then U succeeds and gets ci = bi. Otherwise, U
outputs a failure message.

3 Security Definitions

In this section, we describe the security definitions for OCKS protocol. We
slightly extend the security model of [17] to be suitable for conjunctive key-
word search. In order to treat several keywords, we assume an untrusted storage
system has an actual database which has several records, each of which contains
keyword fields. We assume that there are m keyword fields for each encrypted
documents.

3.1 Security Definition of OCKS

We define two security goals based on the definition of [17]. One is a user security.
It guarantees that an untrusted database supplier T should not learn any infor-
mation about keywords from the user’s requesting query in the i-th subphase
(1 ≤ i ≤ k). The other is a database security. It guarantees that a malicious user
Ũ should get nothing except any search results. We formally define as follows.

Definition 3.1.1 [User Security in OCKS protocol]. Suppose that wi =
wij1 , wij2 , ..., wijdi

and w∗
i = w∗

ij1
, w∗

ij2
, ..., w∗

ijdi
are arbitrary keyword strings in

the i-th subphase and (w1, w2, ...,wk) �= (w∗
1 , w∗

2, ...,w∗
k). The OCKS protocol

is secure for the user if for any malicious database supplier T , the view of T for
any keyword strings w1, w2, ...,wk and the view of T for any keyword strings
w∗

1, w∗
2 , ...,w∗

k are computationally indistinguishable.

Definition 3.1.2 [Database Security in OCKS protocol]. Consider the
following ideal world. A trusted third party (TTP) first receives (B1, B2, ..., Bn)
from T . TTP next tells the user U the search result

⋂dj

t=1 Search(w∗
jt

) on the
request w∗

j = w∗
j1 , w

∗
j2 , ..., w

∗
jdj

for any (1 ≤ j ≤ k). We say that a protocol is
secure for the database if the following condition is satisfied:

322 H.S. Rhee et al.

• [Indistinguishability]. For any malicious user Ũ , there exists a simula-
tor �S that plays the role of a user in the ideal world such that for any
polynomial time distinguisher D,

|Pr(D(the output of Ũ) = 1)− Pr(D(the output of �S) = 1)| < ε(l).

where ε(l) is a negligible function and l is a security parameter.

Definition 3.1.3 [OCKS Security]. We say that a protocol is a secure OCKS
protocol if it satisfies both user and database security in OCKS protocol.

Ogata and Kurosawa use the RSA blind signature scheme to hide keywords in
the transfer phase. Thus, the user’s requesting keywords are blinded from the
malicious database supplier T . We also use the RSA blind signature scheme in
each transfer subphase.

3.2 Security of RSA Blind Signature and Its Related Problem

In [6], Bellare et al. proved that the RSA-blind signature scheme is secure as
long as the RSA known-target inversion problem is hard [6, 19]. The following
is a definition about the security of RSA-blind signature scheme. The function
H is an one-way hash function, where H : {0, 1}∗ −→ Z∗

N . We let KeyGen be
the RSA key generation algorithm which takes k as input and returns the values
N, e and d, where N is a k-bit RSA modulus.

Definition 3.2.1 [Blind Signature Security]. Let k ∈ N be the security pa-
rameter, and let m, h : N → N be functions of k. Let F be a forger who has
access to RSA-inversion oracle and a hash oracle, denoted (·)d mod N and H(·),
respectively. Consider the following experiment.

Experiment. EXPrsa-omf
F ,h,m (k).

(N, e, d) R←KeyGen(k)
((M1, x1), ..., (Mm(k)+1, xm(k)+1)) ←− F (·)dmodN,H(·)(N, e, k)

If the following are all true, return 1 else return 0:

• ∀i ∈ {1, ...t, m(k) + 1}: H(Mi) = xe
i mod N

• Message strings M1, M2, ..., Mm(k)+1 are all distinct.
• F makes at most m(k) quries of message to its RSA-inversion oracles.
• The number of hash-oracle queries made in this experiment is at most h(k)

We define the advantage of the forger F via

Advrsa-omf
F ,h,m (k) = Pr[EXPrsa-omf

F ,h,m (k) = 1].

The RSA blind signature scheme is polynomial-secure against one-more forgery
if the function Advrsa-omf

F ,h,m (·)is negligible for any forger F whose time-complexity
is polynomial in the security parameter k.

Oblivious Conjunctive Keyword Search 323

In RSA known target inversion (for short, RSA-KTI) problem, the num-
ber of oracle calls allowed to the adversary is just one fewer than the number
of target points, so that to win it must compute the RSA-inverse of all target
points. The following is a notion of RSA-KTI problem in [6]. We denote by
(·)d mod N the oracle that takes input y ∈ Z∗

N and returns its RSA-inverse yd.
An adversary solving the known-target inversion problem is given oracle access
to (·)d mod N and is given m(k) + 1 targets where m : N −→ N . Its task is
to compute the RSA-inverses of all the targets while submitting at most m(k)
queries to the oracle.

Definition 3.2.2 [Hardness of RSA-KTI problem]. Let k ∈ N be the secu-
rity parameter, and let m, h : N → N be functions of k. Let A be an adversary
who has access to an (·)d mod N . Consider the following experiment:

Experiment. EXPrsa-kti
A,m (k).

(N, e, d) R←KeyGen(k)
For i = 1 to m(k) + 1 do yi

R←Z∗
N (N, e, k, y1, ..., ym(k)+1)

If the following are both true then return 1 else teturn 0

• ∀i ∈ {1, ..., m(k) + 1}: yi = xe
i mod N

• A makes at most m(k) oracle queries.

We define the advantage of A via

Advrsa-kti
A,m (k) = Pr[EXPrsa-kti

A,m (k) = 1]

The RSA-KTI problem is said to be hard if the function Advrsa-kti
A,m (k) is neg-

ligible for any adversary A whose time-complexity is polynomial in the security
parameter k.

Proposition 3.2.3 [6]. If RSA-KTI is hard, then RSA blind signature scheme
is polynomially-secure against one-more forgery. �

4 OCKS Protocol

In this section, we construct an OCKS protocol. We show that OCKS protocol
is secure if the one-more RSA-inversion problem is hard. The OCKS protocol is
illustrated in Fig.1, and works as follows.

• [Commitment Phase]. T generates a public key (N, e) and a secret key d
of RSA. We assume that the value ki is a decryption key of encrypted data
ci = Eki(Di), where Di = {wi1, ..., wim}. Let keygeni(x) = (x − ri1) × · ·
· × (x− rim) + ki be a key generation function which provides a decryption
key ki corresponding to data ci, where m is the number of keyword fields.
Let leng : ZN −→ Zq is an ideal hash function and fk : ZN −→ ZN is a

324 H.S. Rhee et al.

T U

B1,...,Bn−−−−−→
Randomly choose w∗

j1 , w∗
j2 , ..., w∗

jdj
←− W

Choose a random value r ∈ ZN

Compute Y = re × fk(w∗
j1) × · · · × fk(w∗

jdj
)

Y←−−−−
Compute
K′ = Y d mod N

K ′−−−−→
Compute K = K′/r
Compute OCSIij1 × · · · × OCSIijdj

/K,
and set it as (r′

i)
dj .

Compute leng((r′
i)dj) = (ridj)

If gridi = yidi

then user U gets the decryption key
ki = keygeni(ridj)

Fig. 1. OCKS Protocol

pseudo random function. For every i = 1, ..., n and j = 1, ..., m, T computes
the followings.
(Step 1) T randomly chooses r′i ∈ ZN .
(Step 2) T makes OCSIij = fk(wi,j)dr′i mod N , where OCSIij is the obliv-
ious conjunctive keyword searchable information for wij .
(Step 3) T computes leng(r′ji) = rij and sets yij = grij .
(Step 4) T constructs Bi = ci ‖ yi1, yi2, ..., yim‖ keygeni(x) ‖ OCSIi1, ...,
OCSIim. T commits B1, B2, · · ·, Bn.

• [Transfer Phase]. The transfer phase consists of k subphases. U learns a
conjunctive keyword search result

⋂dj

t=1 search(w∗
jt

) as follows.
(Step 1) U choose dj keywords w∗ = w∗

j1
, w∗

j2
, ..., w∗

jdj
on W adaptively

(Step 2) U chooses a random element r ∈ ZN and computes Y as follows.
U sends Y to T .

Y = re × fk(w∗
j1)× · · · × fk(w∗

jdj
).

(Step 3) T computes K ′ = Y d mod N and sends it to U .
(Step 4) U computes K = K ′/r.
(Step 5) For every i from 1 to n, U computes ridj as follows.{

OCSIij1 × · · · × OCSIijdi
/K =⇒ (r′i)

dj .

leng((r′i)
dj) =⇒ ridj .

Oblivious Conjunctive Keyword Search 325

If the following equation (1) is satisfied, then we determine that the data Di

contains the keywords w∗
j1, w

∗
j2, ..., w

∗
jdj

.

gridj = yidj . (1)

And U can get a decryption key ki for ci by the equation (2).

ki = keygeni(ridj). (2)

User U can get data Di as decrypting the data ci with ki.

4.1 Security of OCKS Protocol

Theorem 1. The above OCKS protocol satisfies user security if the security of
RSA blind signature scheme.

Proof. For every subphase i (i = 1, 2, ..., k), T has no information on
w∗

1, w∗
2 , · · ·, w∗

k, where w∗
i = wij1 , wij2 , ..., wijdi

since they are blinded by the
RSA blind signature scheme. Therefore, user security is satisfies under an in-
tractability of RSA known target inversion problem. �

Theorem 2. The above OCKS protocol satisfies database security if the RSA-
KTI is hard.

Proof. We next prove the database security by assuming that RSA-KTI is
hard. We show that there exists a simulator �S that plays the role of a user in
ideal world as follows.

[Commitment Phase]. �S generates (N, e, d) and sends (N, e) to ũ. �S also
chooses B1, ..., Bn and sends them to ũ.

• For every i = 1, ..., n, �S randomly chooses ci and OCSIi1, ...,OCSIim.
• For every i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m), �S randomly chooses rij and

decryption key ki, and computes yij = grij and sets keygeni(x) = (x −
ri1)× · · · × (x− rim) + ki.

• �S commits Bi = ci ‖ yi1 , yi2 , ..., yim ‖ keygeni(x) ‖ OCSIi1, ...,OCSIim.

[Transfer Phase]. �S can perfectly simulate T because �S knows (N, e, d).
�S simulates fk as follows. If ũ queries w∗

ij1
, w∗

ij2
, ..., w∗

ijdi
to fk for the first

time, then�S chooses a random value over ZN , return it as the value of fk(w∗
ij1

)∗
fk(w∗

ij2
) ∗ · · · ∗ fk(w∗

ijdi
), where the vector of keywords wi = w∗

ij1
, w∗

ij2
, ..., w∗

ijdi

in i-th subphase.
We assume that QA-list contains the pair of query and the set of result (wi,⋂di

t=1 Search(w∗
ijt

)) (1 ≤ i ≤ k). To simulate an ideal hash function leng, we
need a QA-list. �S simulates an ideal hash function leng as follows.

326 H.S. Rhee et al.

• Let cnt = 0.
• If cnt = 0 then QA-list is empty.
• WLOG, before ũ queries Y to T , ũ queries w∗

ijt
to fk, for every t = 1, ..., di.

(a) If (wi,
⋂di

t=1 Search(w∗
ijt

)) ∈ QA-list, then go to step (c).
else cnt = cnt + 1

(b) If cnt > cnt+1, then a simulator �S sets
⋂di

j=1 Search(w∗
ij) at random.

Otherwise, �S queries wi to the TTP and receives
⋂di

j=1 Search(w∗
ij).

�S adds (wi,
⋂di

j=1 Search(w∗
ij)) to QA-list.

(c) For i (1 ≤ i ≤ n), if ci is included in
⋂di

j=1 Search(w∗
ij), then sets the

values of leng as follows.
− �S computes (r′i)

t = OCSIij1×OCSIij2×···×OCSIijdi
/(fk(wij1))d×

(fk(wij2))d × · · ·(fk(wijdi
))d and then �S sets leng((r′i)

jt) = rijt .
− For all t = di+1, ..., m, �S sets leng((r′i)

jt) at random.
Otherwise, �S sets the value leng at random.

Let BAD be the event that cnt > cnt + 1. If BAD dose not occur, then �S

simulates hash function leng perfectly. Note that Pr(BAD) means the probabil-
ity that Ũ succeeds in the one-more forgery attack on the RSA blind signature
scheme. From Proposition 3.2.3, it is negligible if the RSA-KTI is hard. Con-
sequently, the output of �S and ũ are indistinguishable if the RSA-KTI is
hard. �

5 Concluding Remarks

In this paper, we first gave an oblivious conjunctive keyword search to the scheme
of [17] in the random oracle model. We prove its security under the RSA known
target inversion problem. It would be a good future work to design a secure
OCKS protocol without random oracle assumption.

Acknowledgement

We deeply thank Hyun-A Park for helpful discussions of an earlier version of
this paper. We also very thank anonymous referees of WISA05’ for valuable
comments.

References

1. R. Agrawal and R. Srikant,“Privacy-Preserving Data Mining”, In Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, pp.
439-450, 2000.

2. M. Balze, “A Cryptographic file system for UNIX.”, Processings of 1st ACM Con-
ference om Communications and Computing Security, 1993.

3. S. Bellovin , W. Cheswick, “Privacy-enhanced searches using encrypted bloom
filters”, Cryptology ePrint Archive, Report 2004/022, Feb 2004.

Oblivious Conjunctive Keyword Search 327

4. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key Encryption
with Keyword Search”, EUROCRYPT’04, 2004.

5. D. Brassard, C. Crepeau, and J. M. Robert, “All-or-Nithing Disclosure of Secrets”,
Crypto’86, Springer-Verlag, 1987, pp. 234-238.

6. M. Bellare, C. Namprempre, and D. Pioncheval,“The Power of RSA Onversion
Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme”, Proc.
of Finandcial Cryptography 2001, LNCS vol. 2339, pp. 319-338.

7. Y. C. Chang, M. Mitzenmacher, “privacy preserving keyword searches on remote
encrypted data”,ePrint, October 7th 2003.

8. G. Cattaneo, G. Persiano, A. Del Sorbo, A. Cozzolino, E. Mauriello, and R. Pisapia,
“Design and implementation of a transparent cryptographic file system for UNIX”,
Techincal Report, University of Salerno, 1997.

9. S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for Signing Con-
tracts”, comm. of ACM, 28:637-647, 1985.

10. E. J. Goh, “secure index”, ePrint, October 7th 2003.
11. P. Golle, M. Jakobsson, A. Juels, and Paul Syverson, “Universal Re-encryption for

Mixnets”, In proceedings of CT-RSA 2004, 2004.
12. P. Golle, J. Staddon and B. Waters, “Secure Conjunctive Keyword Search

Over Encrypted Data”, Proceedings of the Second International Conference on
ACNS:Applied Cryptography and Network Security, 2004.

13. J. Hughes and D. Corcoran, “A nuiversal access, smart-card-based, secure fiel sys-
tem.”, Atlanta Linux Showcase , October 1999.

14. A. John , R. Peter, “Electric Communication Development”, Communications of
the ACM ,40,May 1997, pp. 71-79. 48-63, 2002.

15. K. Kurosawa, “Multi-recipient Public-Key Encryption with Shortened Ciphertext”,
In proceedings of PKC 2002, LNCS 2274, pp. 48-63, 2002.

16. M. Noar and B. Pinkas, “Efficient Oblivious trnasfer protocols”, 12th Annual Sym-
posium on Discrete Algorithms(SODA), pp 448-457(2001).

17. W. Ogata and K. Kurosawa, “Oblivious Keyword Search”, Journal of complex-
ity’04, Vol 20. April/Jun 2004.

18. D. Park, K. Kim, and P. Lee, “Public key Encryption with Conjunctive Field
Keyword Search”, WISA’04, LNCS 3325, pp73-86, 2004.

19. D. Pointcheval and J. P. Stern, “Provably secure blind signature schemes”, Proc.
of Asiacrypt’96, LNCS Vol. 1163, pp 252-265, 1996.

20. M. Rabin, “How to exchange secrets by oblivious transfer”, Technical Report TR
81, Aiken computation Lab, Harvard University.

21. D. Song, D. Wagner, and A. Perrige, “Practical Techniques for searches on En-
crypted Data”, In Proc. of the 2000 IEEE Security and Privacy Symposium, May
2000.

22. B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an Encrypted
and Searchable Audit Log”,11th Annual Network and Distributed Security Sympo-
sium (NDSS ’04); 2004.

23. E. Zadok, I. Badulescu, and A. Shender, “Cryptfs : A stackable vnode level en-
cryption fiel system.”, Technical Report CUCS-021-98 : 1998.

Efficient, Non-optimistic Secure Circuit
Evaluation Based on the ElGamal Encryption

Go Yamamoto, Koji Chida, Anderson C.A. Nascimento,
Koutarou Suzuki, and Shigenori Uchiyama

NTT Information Sharing Platform Laboratories,
NTT Corporation 1-1, Hikarinooka, Yokosuka,

Kanagawa, Japan

Abstract. We propose a protocol for implementing secure function eval-
uation based on the homomorphic threshold ElGamal encryption scheme.
To the best of our knowledge, our solution is more efficient in terms of
computational complexity than previous solutions existent in the
literature.

1 Introduction

1.1 Background

Two-party secure function evaluation consists of a protocol which allows n play-
ers, to compute a function f(·), which depends on inputs from the players, such
that at the end of the protocol: the parties are sure that the result of the compu-
tation is correct; no party has learned more about each other’s input than what
can be computed from the output itself; dishonest players did not obtain signif-
icant knowledge about the output of the protocol while preventing the honest
parties from receiving the result of the computation.

Secure function evaluation (SFE) is a central problem in the theory of cryp-
tography and has received considerable attention since its introduction in [19].
Several different solutions, based on a wide range of models and assumptions,
were proposed, e.g. [2, 11, 19].

However, it is still a big challenge to design protocols which are secure and
efficient. Most of the proposed works till now aimed at proving the impossibil-
ity/possibility of SFE in principle, rather than in practice.

With the advent of ubiquitous computing and the bigger role played by low-
computational powered devices in security protocols, the search for efficient pro-
tocols, in terms of computational complexity, for implementing SFE becomes a
crucially important topic.

In this contribution, we give an efficient protocol for implementing secure func-
tion evaluation based on the DDH assumption which, to the best of our knowl-
edge, possesses better computational and communication complexities than pre-
vious solutions in the literature attaining a similar level of security.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 328–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient, Non-optimistic Secure Circuit Evaluation 329

1.2 Previous Work

Many function evaluation protocols were presented in the literature in several
different forms and flavors. The problem was first considered by Yao in [19], who
proved that given the existence of one-way functions, any distributed computa-
tion can be securely implemented.

Subsequently, several researchers tried to obtain more efficient protocols by
using different computational assumptions.

In [5], Cramer et al. proposed a generic and very efficient protocol, in terms of
communication complexity, implementing secure distributed computation based
on homomorphic encryption. They also proved that their protocol is secure when
implemented with the Paillier encryption scheme.

It would be desirable to replace the Paillier encryption used in [5] by the
elliptic ElGamal encryption since the latter can be implemented with much less
computational effort and its key generation process is much simpler and efficient.
This goal was achieved in [17], where a SFE protocol was proposed which has its
security based on the homomorphic ElGamal encryption. The proposed scheme
is secure against active adversaries, and the computational and communication
complexities of the protocol are linear in the number of players. However, two
prices were paid to obtain this improvement: (i) the round complexity of the
protocol depends on the number of players (what is not a big problem if the
number of players is not large) and (ii) the scheme of [17] is optimistic, that is,
its performance degrades if the parties engaged in the protocol misbehave.

1.3 Our Contribution

This paper proposes a protocol for secure function evaluation which is as secure
as the protocol proposed in [17], but achieves an improved communication and
computational complexities while being non-optimistic.

We achieve this improvement by modifying the original protocol for comput-
ing conditional gates proposed in [17] so as to remove cheating parties from
the computation without any need to re-start it and by using slightly modified
versions of known zero-knowledge proofs ([6], [3], and [16]).

1.4 Road Map

Our paper is organized as follows. In Section 2 we present our security model,
definitions and assumptions. In Section 3 we present our protocol, its security
and performance analysis. Conclusions and open problems are given in Section 4.
Some proofs of knowledge used in the main protocol are stated in an Appendix.

2 Security Model

Our model is very similar to the ones presented in [5] and [17].
We assume that there are n players connected by authenticated channels

and a broadcast channel. We assume synchronous communications among the

330 G. Yamamoto et al.

players. No more than t < n players are corrupted by a static malicious adversary
(thus, the adversary has to choose which parties are to be corrupted before
the beginning of the protocol and does not corrupt any more players once the
protocol starts). All the parties, including the adversary, are polynomial time
Turing machines.

The goal of the protocol is to evaluate a certain function F represented as a
binary circuit composed of addition and multiplication gates.

To define security, we introduce a trusted third party, which is connected by
private and synchronous channels to all other players. A protocol secure in the
ideal world is one where all the players give their respective inputs to the trusted
party which them computes the outputs of all the players and distribute them
to the respective parties.

A protocol secure in the real world is one which efficiently emulates the ideal
protocol previously described. That is, any adversary attacking the real proto-
col can be simulated in polynomial time, given only the view of an adversary
attacking the ideal protocol. For further details we refer to [5].

We assume the hardness of the decisional Diffie-Helmann problem (DDH prob-
lem) and the existence of random oracles, as in [17].

We note here that, in the case a majority of the players is dishonest, there
are certain attacks which are unavoidable. For instance, if t > n/2 players are
dishonest, always a subset n−t of players will be able to abort the protocol. Thus,
in the case of dishonest majority we always consider a non-aborting adversary.
Moreover, if t > n/2 nothing prevents cheating parties from leaving the protocol
after they have obtained their desired output, even if the honest parties have
not yet received theirs. Thus, strong fairness is never achieved in this scenario.
Therefore, in our work, in case of dishonest majority, we aim at a weaker form
of fairness, where cheating parties can leave the protocol with some, but not
significant, advantage over honest parties.

3 Proposed Protocols

3.1 Preliminary

In our protocol we use the threshold ElGamal encryption scheme. For the sake
of simplicity, we first introduce its non-threshold version.

Consider a cyclic group G of order q generated by G where the DDH problem
is hard. Consider the ElGamal public key (G, H = uG) and its secret key u.

An encryption of a ∈ {0, 1} is defined as:

E(a, r) def= (rG, (a + r)H), (1)

where r ∈R Z/qZ.
a can be obtained from E(a, r) by dividing (a + r)H by urG and then com-

puting the discrete logarithm of the result. This is infeasible in general. However,
in our case, because a is always taken from a small (binary) domain, this task
can be performed efficiently.

Efficient, Non-optimistic Secure Circuit Evaluation 331

Note that this encryption scheme is homomorphic, that is, E(a, r)×E(ã, r̃)λ =
E(a + λã, r′), for a publicly known value λ. Thus, linear operations are eas-
ily implementable on ciphertexts. Also, it is easy to see that, given E(a, r),
E(ã, r̃) and λ, a party A can prove in zero-knowledge to a verifier B that
E(a+λã, r̃) is indeed a valid encryption of a+λã. For further details, please see
Appendix 1.

In the multi-party setting in this paper, players keep shares of the secret key u
in advance. We can use key generation schemes as the ones proposed in [14] and
k-out-of-n verifiable secret sharing schemes as [8] to securely distribute shares
of an unknown and randomly chosen secret key u.

Our goal in the subsequent sections is to securely implement an operation ⊕
on a ∈ {0, 1} and b ∈ Z/qZ taken not necessarily from a binary domain, such
that:

a⊕ b
def=

{
b (a = 0)
1− b (a = 1)

It is obvious that ⊕ stands for the ordinary XOR if a, b ∈ {0, 1}, which
together with addition gates, can be used to obtain any secure function evalu-
ation. A gate implementing a ⊕ b was called a conditional gate in [17]. In the
next section we give a new, more efficient protocol for obtaining conditional
gates.

3.2 Proposed Protocol for Implementing Conditional Gates

Here we give a new, more efficient protocol for implementing conditional gates.
Compared to the protocol proposed in [17] our solution is non-optimistic while
presenting a slightly better computational performance.

Hereafter, E(·) stands for the threshold homomorphic ElGamal encryption
with its secret key shared among n players. We start with input bits a, b ∈
{0, 1} ⊂ Z/qZ (not necessarily known to any of the players) and random num-
bers r, s ∈R Z/qZ. The proposed protocol uses E(a, r) and E(b, s) as input,
and computes E(a ⊕ b, t) for some t ∈R Z/qZ while keeping a and b secret
through its entire execution. Denote the n players participating in the protocol
by P1, P2, · · · , Pn.

The basic idea of the protocol is close to that of [17], but the scheme is
different. The proposed protocol requires no translation from {0, 1} to {−1, 1}
for input/output bits, and no Pedersen commitments in the process, what overall
results in a more efficient protocol. We assume that at a setup phase, the players
generated a public key π and secret shares of a private key σ of an ElGamal
encryption scheme, for instance, by using the protocols proposed in [14].

The Protocol Z in Figure 1 illustrates our protocol. The Protocol B is de-
scribed in Figure 2, that illustrates an honest verifier zero-knowledge proof of
knowledge for a witness on the membership of ANDORDL, where

332 G. Yamamoto et al.

Parties: players {Pi}i=1,2,··· ,n.
Common input: ciphertexts E(a, r), E(b, s), where a ∈ {0, 1}, b ∈ Z/qZ

Output: ciphertext E(a ⊕ b, r′′) for some random r′′.

1. Let E(a0, r0)
def= E(a, r), E(b0, s0)

def= E(b, s).
2. Repeat the following steps for i = 1, 2, ..., n.

(a) Pi generates a random bit ei and a random number ti, ui ∈R

{0, 1, 2, · · · , p − 1}.
(b) Pi takes E(ai−1, ri−1), E(bi−1, si−1) as input, computes E(ai, ri) =

(A′, B′), E(bi, si) = (X ′, Y ′) according to the equations below. If i �= n
then Pi sends this result to Pi+1, otherwise move to Step 3.
Denote (A, B) = E(ai−1, ri−1), (X, Y) = E(bi−1, si−1).

(A′, B′) =

{
(A,B) + (tiG, tiH) (ei = 0)
(−A,−B) + (tiG, (ti + 1)H) (ei = 1)

(2)

(X ′, Y ′) =

{
(X + Y) + (uiG, uiH) (ei = 0)
(−X,−Y) + (uiG, (ui + 1)H) (ei = 1)

(3)

(c) Pi proves in zero knowledge (by using protocol B described in Figure 2)
that he has acted honestly in the previous step. Set

((G, H), (G0, H0), (G1, H1),

(G′
0, H

′
0), (G

′
1, H

′
1), (b, s, t)) ←

((G, H), (A′ − A,B′ − B), (A + A′, B + B′ − H),

(X ′ − X, Y ′ − Y), (X + X ′, Y + Y ′ − H), (ei, ti, ui)).

(d) In case Pi fails to prove he acted honestly in the previous step set his
output to E(ai−1, ri−1), E(bi−1, si−1) and exclude him from the remaining
of the protocol.

3. The players decrypt E(an, rn) using verifiable ElGamal distributed decryption,
and open an publicly.

4. Define (X, Y) = E(bn, sn). (C, D), the output of the protocol, is:

(C, D) =

{
(X, Y) (an = 0)
(−X,−Y − H) (an = 1)

(4)

Fig. 1. Protocol Z (Conditional Gate)

ANDORDL={(G, H, G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ G10 |

(logG G0 = logH H0 ∧ logG G′
0 = logH H ′

0) ∨
(logG G1 = logH H1 ∧ logG G′

1 = logH H ′
1)}.

The proofs for Protocol B are described in Appendix.

Efficient, Non-optimistic Secure Circuit Evaluation 333

It is easy to verify the correctness of Protocol Z. First check that

e1 ⊕ (e2 ⊕ b) = (e1 ⊕ e2)⊕ b,

where e1, e2 ∈ {0, 1}, b ∈ Z/qZ, and ⊕ stands for

a⊕ b =

{
b (a = 0)
1− b (a = 1).

The output of Protocol Z is E(an ⊕ bn, r′′) for some r′′. Since an = e1 ⊕ e2 ⊕
· · · ⊕ en ⊕ a and bn = e1 ⊕ e2 ⊕ · · · ⊕ en ⊕ b, thus

an ⊕ bn = (e1 ⊕ e2 ⊕ · · · ⊕ en ⊕ a)⊕ (e1 ⊕ e2 ⊕ · · · ⊕ en ⊕ b)
= (e1 ⊕ e2 ⊕ · · · ⊕ en ⊕ a⊕ e1 ⊕ e2 ⊕ · · · ⊕ en)⊕ b

= a⊕ b,

hence E(an ⊕ bn, r′′) = E(a⊕ b, r′′).

Protocol B:

Common input: (G, H, G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ G10.

Private input to P : b ∈ {0, 1}, s, t ∈ Z/qZ s.t. Gb = sG, Hb = sH , G′
b = tG, and

H ′
b = tH .

Statement to prove: (G, H, G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ ANDORDL.

1. P chooses r, v, c1−b ∈R Z/qZ and computes Rb
G = rG, Rb

H = rH ,
R1−b

G = vG + c1−b(eG1−b + G′
1−b), R1−b

H = vH + c1−b(eH1−b + H ′
1−b),

cb = H1(R0
G||R0

H ||R1
G||R1

H) − c1−b, zb = r − cb(se + t), and z1−b = v, where
e = H0(G||H ||G0||H0||G1||H1||G′

0||H ′
0||G′

1||H ′
1) and H0 and H1 are hash func-

tions that map {0, 1}∗ → Z/qZ. It then sends (z0, z1, c0, c1) to V .
2. V verifies

c0+c1 = H1(z0G+c0(eG0+G′
0)||z0H+c0(eH0+H ′

0)||z1G+c1(eG1+G′
1)||z1H+

c1(eH1 + H ′
1)) and returns accept or reject.

Fig. 2. A protocol for honest verifier zero-knowledge proof of knowledge for a witness
on the membership of ANDORDL

3.3 Security Analysis

Theorem 1. In protocol Z, when less than t < n players are corrupted, the
adversary does not learn any non-negligible information about a, b under the
DDH assumption and the random oracle model.

Proof. (Sketch) Since we assume that, in the case t > n/2 corrupted adversaries
do not abort the protocol, and the threshold of the ElGamal encryption is al-
ways set to be larger than t, we know that protocol Z does not abort and that
unauthorized ciphertexts are never decrypted.

334 G. Yamamoto et al.

The proof will follow from two facts: the security of the proofs of knowl-
edge presented in the appendix and the fact that during the entire protocol,
only data indistinguishable from random is presented to the adversary. In de-
tail, the input for Protocol B is computationally indistinguishable from a ran-
dom input from the point of view of the adversary because ((G0, H0), (G1, H1),
(G′

0, H
′
0), (G

′
1, H

′
1)) = ((A′ − A, B′ − B), (A + A′, B + B′ − H), (X ′ − X, Y ′ −

Y), (X + X ′, Y + Y ′−H)), while A, A′, X, X ′ are randomly chosen and we have
that DDH assumption holds. So according to Proposition 4, if the active adver-
sary corrupts a player, and the corrupted player generates input/output with no
knowledge of ei, ti, ui, Protocol B will reject this player. Since the rejected player
is immediately excluded from protocol, the only action that the active adversary
can take is to control the choices of (ei, ti, ui). It is obvious that Protocol Z
outputs E(a⊕ b, r′′) even when some of the players are corrupted.

Without loss of generality we assume that a single player j is uncorrupted.
To see that Protocol Z leaks no information on a, b, we configure a simu-

lator for the protocol that has no decryption oracle but takes E(a, r), E(b, s),
E(a⊕ b, r′′) as input. Without loss of generality we may assume all players are
corrupted except for a player j.

For the simulation of corrupted players, the simulator execute the protocol as
described in Protocol Z, while setting ei, ti, ui as the adversary chooses.

For the simulation of player j, the only uncorrupted player, the simulator
choose ej ∈R {0, 1} and outputs E(ej , tj), E(ej ⊕ a⊕ b, sj) in place of E(aj , rj),
E(bj , uj) respectively, where E(ej ⊕ a⊕ b, sj) is obtained by

E(ej ⊕ a⊕ b, sj) =

{
E(a⊕ b, r′′) + (ujG, ujH) (a = 0)
−E(a⊕ b, r′′) + (ujG, (uj + 1)H) (a = 1).

To authenticate its input/output by Protocol B, the simulator execute the sim-
ulation of Protocol B as in Proposition 1.

For simulating the decryption stage, the simulator outputs ãn =
⊕n

i=j ei,
and generates the proof by executing the simulation for the verifiable decryption
protocol.

Since the output of the simulated player k is E(
⊕n

i=j ei, rn) and E(a ⊕ b ⊕⊕n
i=j ei, sn), one obtains E(an ⊕ bn, r′′) = E(a ⊕ b, r′′) as the output of the

simulation, successfully simulating Protocol Z.
To see the simulated view of the adversary is indistinguishable from that of

the real protocol it suffices to see

viewR = ({(E(ai, ri), E(bi, si), Πi}, Π ′, an),

and
viewS = ({(Ẽ(ai, ri), Ẽ(bi, si), Π̃i}, Π̃ ′, ãn),

are indistinguishable. Here Πi is the proof of protocol Z in Step 2, and Π ′ is the
proof in Step 3, Ẽ(ai, ri), Ẽ(bi, si) are the outputs of simulated players, Π̃, Π̃ ′
are simulated proofs for Step 2 and Step 3 respectively.

Efficient, Non-optimistic Secure Circuit Evaluation 335

It is obvious that E(ai, ri) and Ẽ(ai, ri) are computationally indistinguishable
because of the DDH assumption and so for E(bi, si) and Ẽ(bi, si). Πi and Π̃i for
each i, Π ′ and Π̃ ′ are zero-knowledge proofs, thus they cannot help distinguish
viewR and viewS . an is a random bit since at least one of the players in the real
protocol is not corrupted. ãn =

⊕n
i=j ei is also a random bit because player j

is not corrupted in the simulation. Hence viewR and viewS are computationally
indistinguishable under the DDH assumption.

3.4 Secure Function Evaluation

First note that in the case we restrict our inputs a and b to be binary in protocol
Z, it is easy to show that conditional gates can be used to securely evaluate any
logic gate, while keeping the the logic gate itself hidden.

Consider a “quadratic form”

fx,y,z,w(a, b) = (a⊕ x) + (b ⊕ y) + (a⊕ b)⊕ z + w, (5)

where x, y, z, w ∈ Z/qZ.
It is easy to see that fx,y,z,w can be configured to be any logic gate if one

choose x, y, z, w ∈ Z/qZ appropriately.
By having encrypted values E(x, rx), E(y, ry), E(z, rz), and E(w, rw) the in-

puts E(a, r), E(b, s), E(x, rx), E(y, ry), E(z, rz), and E(w, rw), one can securely
evaluate fxyzw. Additions are performed by exploiting the homomorphism of the
underlying encryption scheme, whereas XOR operations can be performed by us-
ing our protocol Z. Thus one can apply any logic gate to encrypted plaintexts
while hiding the gate itself.

Informally speaking, a computation is said to be secure if it is private, correct
and fair [12], informally these properties are:

Private: No party learns anything more than what can be computed from the
output.

Correct: The output received by each party is guaranteed to be the output of
the specified function.

Fair: Corrupted parties should receive an output iff honest parties do.

The fairness requirement is usually relaxed in the faulty majority scenario. We
assume that the additional unfair information a corrupted party has about the
computation’s output can be made arbitrarily small in a security parameter k.

A secure computation usually has three stages:

Input Stage: Here the parties enrolled in the protocol commit to their inputs.

Computation Stage: In the computational stage, the parties evaluate the
circuit which describes the function to be evaluated gate by gate. We consider
only AND and negation gates, since they are universal.

Output Stage: In this stage, the parties receive their correspondent outputs.

336 G. Yamamoto et al.

In our protocol we assume an extra stage which happens before the input
stage, it is called Setup phase.

Setup Phase: During the setting phase, the players generate the public/private
keys for the threshold ElGamal encryption scheme used subsequently in the
computation stage.

A Protocol Implementing Secure Multi-Party Computation: Our proto-
col is similar to the one presented in [5] and the security analysis there presented
can be straightforwardly modified to show the security and correctness of our
protocol.

1. Setup Phase: In this stage, all the players generate the private/public keys
of the threshold encryption schemes used in the subsequent stages.

2. Input Stage: Each player encrypts his own input by using the ElGamal
threshold encryption scheme agreed on during the Setup phase. The players
prove in zero-knowledge that they have behaved correctly.

3. Computation Stage: During the computation stage, the players evaluate
the circuit being computed gate by gate. AND gates can be evaluated by
using protocol Z. Negation gates can be easily implemented by exploiting
the linearity of our encryption scheme (the players should prove in zero
knowledge that they behave correctly).

4. Opening Stage: Here, all the players reconstruct the result of the com-
putation. If the number of corrupted players is larger or equal to a half of
the players, then fairness becomes an important issue. However, we note
that a solution proposed in [17] equally applies to our setting and can be
straightforwardly used here to achieve weak fairness.

3.5 Performance Analysis

In this section, we study the performance of the proposed protocol in terms of
computational and communication complexities.

We compare our protocol with the other protocols possessing linear commu-
nication and computational complexities in the literature that are secure against
active adversaries, namely [5] and [17]. We compare the costs of implementing a
conditional gate with our protocol and the protocol proposed in [17] to the cost
of implementing a multiplication with the protocol proposed in [5].

Table 1 shows a comparison of the required computational effort, and Table
2 shows a comparison of the communications complexities for each XOR gate
(multiplication gate in the case of [5]). Here n is the number of participants in
the protocol, MLT is the amount of computational effort required for computing
XOR (multiplication gates) with honest-but-curious adversaries (without any
kind of verification), PRF is the computational cost of the proofs for making
the XOR (multiplication) secure against active adversaries and VRF is the cost
of verifying those proofs. MPai, MElG are the times required for computing
the modular exponentiation operation in the Paillier encryption and the elliptic
multiplication by scalars in the elliptic ElGamal encryption, respectively. We
take the protocol proposed in [10] as the distributed decryption scheme in [5].

Efficient, Non-optimistic Secure Circuit Evaluation 337

Table 1. Computation time for XOR gate(worst case)

MLT PRF VRF
[5] 4nMPai 15nMPai 13nMPai

[17] 6nMElG 18nMElG 27nMElG

ours 5nMElG 10nMElG 16nMElG

Table 2. Communications traffic for XOR gate(outbound, worst case)

MLT PRF
[5] 3n|N2| 4n|N2|
[17] 6n(|pk| + 1) 11n|q|
ours 5n(|pk| + 1) 6n|q|

The modular exponentiation in Paillier encryption is executed on Z/N2Z,
the bit length of N is 1024. The elliptic ElGamal encryption is executed on an
elliptic curve over Fpk . q is the order of the base point. We consider that the
resulting primitives have about the same level of security. Regarding elliptic ex-
ponentiation on OEF(Optimal Extension Fields), 174 bit elliptic multiplication
by scalars is computed in 0.254 ms on a 500 MHz Alpha 21264 processor if we
optimize it according to [1] etc. Regarding modular exponentiation, the library
evaluation by [18] indicates that 1.6 GHz AMD Opteron processor took 28.41
ms to compute 2048 bits RSA decryption. If we take this value as a rough ap-
proximation, we may consider MPai ∼ 200MElG. Hence the proposed protocol
seems to be the most efficient homomorphic encryption based scheme in terms
of computational communication complexities (but it should be remarked that
[5] has a better round complexity).

4 Conclusions and Future Works

In this paper, we proposed a protocol to perform secure distributed compu-
tations based on the DDH assumption. The performance of our protocol was
superior when compared to a previous construction [17] while, at the same time,
being non-optimistic. Our solution seems applicable when the number of players
engaged in the computational is no so large, e.g. secure two-party computations.

The biggest open problem left by this work is to improve the round complexity
of the protocol, while preserving its computational efficiency.

References

1. K. Aoki, F. Hoshino, and T. Kobayashi, “A Cyclic Window Algorithm for ECC
Defined over Extension Fields,” S. Qing, T.Okamoto, and J. Zhou (Eds.), Pro-
ceedings of International Conference on Information and Communication Security
(ICICS 2001), LNCS 2229, pp. 62–73, Springer-Verlag, 2001.

338 G. Yamamoto et al.

2. D. Chaum, C. Crépeau, and I. Damg̊ard, “Multiparty unconditionally secure pro-
tocols,” STOC ’88.

3. D.L. Chaum and T.P. Pedersen, “Wallet databases with observers,” Advances in
Cryptology - CRYPTO ’92, LNCS 740, pp. 80–105, Springer-Verlag, 1993.

4. H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation using
mixed coordinates,” K. Ohta and D. Pei (Eds.), Advances in Cryptology - ASI-
ACRYPT ’98, LNCS 1514, pp. 51–65, Springer-Verlag, 1998.

5. R. Cramer, I. Damg̊ard and J.B. Nielsen, “Multiparty computation from threshold
homomorphic encryption,” Basic Research in Computer Science (BRICS) RS-00-
14, Jun. 2000.

6. R. Cramer, I. Damg̊ard and B. Schoenmakers, “Proofs of partial knowledge,” Ad-
vances in Cryptology - CRYPTO ’94, LNCS 839, pp. 174–187, Springer-Verlag,
1994.

7. Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” G. Brassard (Ed.), Ad-
vances in Cryptology - CRYPTO ’89, LNCS 435, pp. 307–315, Springer-Verlag,
1990.

8. P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,”
In Proc. of the 28th IEEE Symposium on the Foundations of Computer Science
(FOCS), pp. 427–437, IEEE Press, Oct. 1987.

9. A. Fiat and A. Shamir, “How to Prove Yourself: practical solutions of identification
and signature problems,” A. M. Odlyzko (Eds.), Advances in Cryptology - CRYPT
’86, LNCS 263, pp. 186–194, Springer-Verlag, 1987.

10. P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in the context of
voting or lotteries,” Financial Cryptography ’00, LNCS 1962, pp. 90–104, Springer-
Verlag, 2000.

11. O. Goldreich, S. Micali, and A. Widgerson, “How to play any mental game,” STOC
’87, pp. 218–229, 1987.

12. O. Goldreich, “Secure Multi-Party Computation,” Working Draft, Version 1.1,
1998. Available at
http://www.wisdom.weizmann.ac.il/~oded/pp.html.

13. D. Grigoriev and I. Ponomarenko, “Homomorphic public-key cryptosystems over
groups and rings,” arXiv:cs.CR/0309010 v1, 8 Sep. 2003.

14. T. P. Pedersen, “A threshold cryptosystem without a trusted party,” Advances in
Cryptology - EUROCRYPT ’91, LNCS 547, pp. 522–526, Springer-Verlag, 1991.

15. T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing,” J. Feigenbaum (Ed.), Advances in Cryptology - CRYPTO ’91, LNCS
576, pp. 129–140, Springer-Verlag, 1991.

16. D. Pointcheval and J. Stern, “Security Proofs for Signature Schemes,” U. Maurer
(Ed.), Advances in Cryptology - EUROCRYPTO ’96, LNCS 1070, pp. 387–398,
Springer-Verlag, 1996.

17. B. Schoenmakers and P. Tuyls, “Practical Two-Party Computation Based on the
Conditional Gate,” P.J.Lee (Ed.), ASIACRYPT 2004, LNCS 3329, pp. 119–204,
Springer-Verlag, 2004.

18. W. Dai, http://www.eskimo.com/~weidai/benchmarks.html, 2004.
19. A.C. Yao, “How to generate and exchange secrets,” In Proc. of the 27th IEEE Symp.

on Foundations of Computer Science (FOCS ’86), IEEE Press, pp. 162–167, 1986.

Efficient, Non-optimistic Secure Circuit Evaluation 339

Appendix

In this appendix our goal is to present Protocol B, which is essential to prove
the security of Protocol Z. Roughly speaking, through Protocol B the players
engaged in Z can prove in zero-knowledge that they acted correctly. Our protocol
is a modification of earlier results in the literature (mostly [6], [3], and [16]).

We first describe Protocol A (OR-Proof) which is an important module of
protocol B.

Underlying OR-Proof. Let GDL be a probabilistic polynomial-time algorithm
that outputs an instance of a discrete logarithm problem (Gq, G, H) by taking
security parameter κ, where Gq is a cyclic group of order q, G is a generator of
Gq, and H is an element of Gq. We assume the bit-length of q is κ.

Let R ⊂ {0, 1}∗×{0, 1}∗ be a binary relation where there exists a polynomial-
time machine that decides whether given (x, w) is in R or not with non-negligible
probability in the length of x. Let LR

def= {x | ∃w s.t. (x, w) ∈ R} be a language.
Note that when (x, w) ∈ R, w is called a witness of x.

Now consider the language defined by

ORDL def= {(G, H, G0, H0, G1, H1)∈ G6
q | logG G0 =logH H0 ∨ logG G1 =logH H1}.

This is the language that the discrete logarithm of Gb to the base G is equal to
the discrete logarithm of Hb to the base H for b ∈ {0, 1}.

Below Protocol A illustrates an honest verifier zero-knowledge proof of knowl-
edge for a witness on the membership of ORDL.

Protocol A:

Common input: (G, H, G0, H0, G1, H1) ∈ G6
q , where (Gq, G, H) ← GDL(1κ).

Private input to P : b ∈ {0, 1}, s ∈ Z/qZ s.t. Gb = sG and Hb = sH .
Statement to prove: (G, H, G0, H0, G1, H1) ∈ ORDL.

1. P chooses r, v, c1−b ∈R Z/qZ and computes Rb
G = rG, Rb

H = rH , R1−b
G =

vG + c1−bG1−b, R1−b
H = vH + c1−bH1−b, cb = H(R0

G||R0
H ||R1

G||R1
H) − c1−b,

zb = r − cbs, and z1−b = v, where H is a hash function that maps {0, 1}∗ →
Z/qZ. It then sends (z0, z1, c0, c1) to V .

2. V verifies c0 + c1 = H(z0G+ c0G0||z0H + c0H0||z1G+ c1G1||z1H + c1H1) and
returns accept or reject.

Fig. 3. A protocol for honest verifier zero-knowledge proof of knowledge for a witness
on the membership of ORDL

The following lemma can be obtained regarding ORDL.

Lemma 1 (Indistinguishability). The hardness of deciding whether ins
def=

(G, H, G0, H0, G1, H1) ∈ ORDL or not is equivalent to the DDH problem over
Gq, where G0, H0, G1, H1 ∈R Gq if ins �∈ ORDL.

340 G. Yamamoto et al.

Furthermore, by combining the OR-proof [6] and the proof of equality of discrete
logarithms [3], we obtain a Σ-protocol. To make it non-interactive, one can follow
[16], as it is proven in the following lemmas.

Lemma 2 (Simulatability). Define viewR = (z0, z1, c0, c1). There exists a
simulator that, on input (G, H, G0, H0, G1, H1) ∈ ORDL, outputs viewS which
is perfectly indistinguishable from viewR in expected polynomial time in κ under
the random oracle model.

Lemma 3 (Soundness). If P is successful in producing (z0, z1, c0, c1) accepted
by V , P has witnesses b ∈ {0, 1} and s ∈ Z/qZ s.t. Gb = sG and Hb = sH under
the random oracle model.

AND-OR Proof Consider the language defined by

ANDORDL def= {(G, H, G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ G10

q |

(logG G0 = logH H0 ∧ logG G′
0 = logH H ′

0)∨
(logG G1 = logH H1 ∧ logG G′

1 = logH H ′
1)}.

This is the language that the discrete logarithms of Gb and G′
b to the base G

are respectively equal to the discrete logarithms of Hb and H ′
b to the base H for

b ∈ {0, 1}.
The Protocol B illustrates an honest verifier zero-knowledge proof of knowl-

edge for a witness on the membership of ANDORDL. For the convenience of the
readers here we describe Protocol B again, where (G, G, H) is generated by GDL.

Protocol B:

Common input: (G, H,G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ G10

q , where
(Gq, G, H) ← GDL(1κ).
Private input to P : b ∈ {0, 1}, s, t ∈ Z/qZ s.t. Gb = sG, Hb = sH , G′

b = tG, and
H ′

b = tH .
Statement to prove: (G, H, G0, H0, G1, H1, G

′
0, H

′
0, G

′
1, H

′
1) ∈ ANDORDL.

1. P chooses r, v, c1−b ∈R Z/qZ and computes Rb
G = rG, Rb

H = rH ,
R1−b

G = vG + c1−b(eG1−b + G′
1−b), R1−b

H = vH + c1−b(eH1−b + H ′
1−b),

cb = H1(R0
G||R0

H ||R1
G||R1

H) − c1−b, zb = r − cb(se + t), and z1−b = v, where
e = H0(G||H ||G0||H0||G1||H1||G′

0||H ′
0||G′

1||H ′
1) and H0 and H1 are hash func-

tions that map {0, 1}∗ → Z/qZ. It then sends (z0, z1, c0, c1) to V .
2. V verifies

c0+c1 = H1(z0G+c0(eG0+G′
0)||z0H+c0(eH0+H ′

0)||z1G+c1(eG1+G′
1)||z1H+

c1(eH1 + H ′
1)) and returns accept or reject.

Fig. 4. A protocol for honest verifier zero-knowledge proof of knowledge for a witness
on the membership of ANDORDL

Efficient, Non-optimistic Secure Circuit Evaluation 341

Proposition 1 (Simulatability). Define viewR = (z0, z1, c0, c1). There exists
a simulator that, on input (G, H, G0, H0, G1, H1, G

′
0, H

′
0, G

′
1, H

′
1) ∈ ANDORDL,

outputs viewS which is perfectly indistinguishable from viewR in expected poly-
nomial time in κ under the random oracle model.

Proof. A simulator performs the following procedure for input
(G, H, G0, H0, G1, H1, G

′
0, H

′
0, G

′
1, H

′
1) ∈ ANDORDL.

1. Choose r̃, ṽ, c̃0, c̃1 ∈R Z/qZ.
2. Generate e = H0(G||H ||G0||H0||G1||H1||G′

0||H ′
0||G′

1||H ′
1).

3. Compute R̃0
G = r̃G + c̃0(eG0 + G′

0), R̃0
H = r̃H + c̃0(eH0 + H ′

0), R̃1
G =

ṽG + c̃1(eG1 + G′
1), R̃1

H = ṽH + c̃1(eH1 + H ′
1), z̃0 = r̃, z̃1 = ṽ.

4. Output viewS
def= (z̃0, z̃1, c̃0, c̃1).

Here we assume H0 is an ideal random function that maps {0, 1}∗ to Z/qZ. We
also assume H1 is a random function that maps {0, 1}∗ to Z/qZ, however, it
returns c̃0 + c̃1 when the string R̃0

G||R̃0
H ||R̃1

G||R̃1
H is input. Then it is clear viewS

is accepted by V and viewR and viewS are perfectly indistinguishable.

Proposition 2 (Soundness). If P is successful in producing (z0, z1, c0, c1) ac-
cepted by V , P has witnesses b ∈ {0, 1} and s, t ∈ Z/qZ s.t. Gb = sG, Hb = sH ,
G′

b = tG, and H ′
b = tH with overwhelming probability assuming the hardness

of discrete logarithm problem under the random oracle model.

Proof. Set αi = logG Gi, βi = logH Hi, α′
i = logG G′

i, and β′
i = logH H ′

i for
i = 0, 1. Then, it is considered the following three cases;

Case 1: αb = βb(= s) ∧ α′
b = β′

b(= t) for b ∈ {0, 1}, that is, P is honest.
Case 2: (α0 �= β0 ∧ α1 �= β1) ∨ (α′

0 �= β′
0 ∧ α′

1 �= β′
1), but αbe + α′

b = βbe + β′
b

for b ∈ {0, 1}.
Case 3: (α0 �= β0 ∧α1 �= β1) ∨ (α′

0 �= β′
0 ∧α′

1 �= β′
1) and α0e + α′

0 �= β0e + β′
0 ∧

α0e + α′
0 �= β0e + β′

0.

In Case 3, it is obvious from Lemma 4 that V rejects the proof generated by P .
In Case 1, if the proof generated by P is accepted, b and se + t can be extracted
by the knowledge extractor in Lemma 3. Thus we separate the analysis of Case
1 in two subcases. The first is the case where P has all of witnesses b, s, and
t. The other is when P does not have s and t though it has se + t. We show
that a probabilistic polynomial-time adversary A breaks the discrete logarithm
problem using P̃ who outputs the correct proof for ANDORDL assuming the
latter case.

Let (Gq, G, G̃) ← GDL(1κ) be an instance of the discrete logarithm problem.
Denote logG G̃ by x. Let H0 be an ideal random function that maps {0, 1}∗ to
Z/qZ. A and P̃ are allowed to access to H0. Without loss of generality, we can
see that P̃ is an oracle that inputs

(G, H, G0, H0, G1, H1, G
′
0, H

′
0, G

′
1, H

′
1) ∈ ANDORDL, (6)

which is the input of Protocol B, and e ∈ Z/qZ and outputs w = se + t with
non-negligible probability in κ, where s = logG Gb = logH Hb, t = logG G′

b =
logH H ′

b, and b ∈ {0, 1}. A performs the following procedure.

342 G. Yamamoto et al.

1. Inputs (Gq, G, G̃).
2. Chooses b̃ ∈R {0, 1} and z̃, z̃′, s̃, t̃ ∈R Z/qZ.
3. Computes H̃ = z̃G, G̃b̃ = s̃G̃, H̃b̃ = z̃G̃b̃, G̃′

b̃
= t̃G̃, and H̃ ′

b̃
= z̃G̃′

b̃
.

4. Chooses G̃1−b̃, H̃1−b̃, G̃
′
1−b̃

, H̃ ′
1−b̃

∈R Gq.

5. Sends insA
def= (G, H̃, G̃0, H̃0, G̃1, H̃1, G̃

′
0, H̃

′
0, G̃

′
1, H̃

′
1) to H0 and obtains ẽ ∈

Z/qZ from it.
6. Sends insA and ẽ to P̃ and obtain w̃ ∈ Z/qZ from it.

Then, since w̃ is equal to (s̃x)ẽ+ t̃x with non-negligible probability, A can obtain
x with high probability. P̃ always works because insA ∈ ANDORDL and e and
ẽ are perfectly indistinguishable.

Finally, we show the success probability of probabilistic polynomial-time ad-
versary A′ that aims at generating Case 2 is negligible. Let OB be an oracle
that executes Protocol B. We denote by qH the maximum number of access that
A′ has to OB. Note that, qH is polynomially bounded in κ. Since challenge e
is randomly chosen by H0 after αb, βb, α′

b, and β′
b are publicly committed, the

success probability of an adversary A′ that is allowed to access OB only once
is exactly 1/q. Namely, the success probability, WinA′ , of A′ that access to OB

qH-times is at most 1− (1− 1
q)qH . Thus, it is obtained

WinA′ = 1− (1 − 1
q)qH

= 1− (1− qH
q + qH(qH−1)

2q2 − · · ·)
< qH

q ,

and this is negligible.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 343 – 353, 2006.
© Springer-Verlag Berlin Heidelberg 2006

New Concept of Authority Range for Flexible
Management of Role Hierarchy

Sejong Oh

Dept. of Computer Science, Dankook University, San 29 Anseo-dong,
Cheonan, 330-714, Korea

sejongoh@dankook.ac.kr
http://home.dankook.ac.kr/sejong

Abstract. Most of DBMS adopt Role-Based Access Control (RBAC) model.
Administrative Role-Based Access Control (ARBAC) model intends to decen-
tralize authority management with plural security administrators. They have
their work range on the role hierarchy. One problem with this is that legal modi-
fication of a role hierarchy may induce unexpected side effects. The Role-Role
Assignment 97 (RRA97) model introduced some geometry-based integrity
principles to prevent unexpected side effects. They are complex and ambiguous.
We analyze the reasons of shortcoming of RRA97 model, and introduce a new
concept of authority range for flexible management of role hierarchy.

1 Introduction

The Role-based access control (RBAC) model [1-4] is well known for large-scale
organizations and information systems. The central idea of RBAC is to prevent users
from accessing company information at their own discretion. Instead, access rights are
associated with roles, and users are assigned to appropriate roles. The notion of role is
an enterprise or organizational concept. Therefore, RBAC allows security to be mod-
eled from an enterprise perspective. Since the security modeling can be aligned to the
roles and responsibilities within the organization, this greatly simplifies the manage-
ment of access rights. In the real world, a role can be defined as a job position within
an organization that describes the authority and responsibility conferred on a user
assigned to that role. Role hierarchies are natural means for structuring roles to reflect
an organization's lines of authority and responsibility, and are defined as a partial-
order relationship of related roles. As role hierarchies are similar to authorization
systems, they are suitable for modeling of enterprise organization structures.

In large-scale organizations or information systems, there are numerous roles and
users and managing these can be a formidable problem. One solution is to decentral-
ize role management. The administrative RBAC (ARBAC) model [5, 6] adds decen-
tralized RBAC administration to the RBAC model. In the ARBAC model, there are
two role hierarchies, a (general) role hierarchy and an administrative role hierarchy.
Fig.1 shows two role hierarchies examples. A security administrator is assigned to
proper administrative role, and each administrative role has its own administration

344 S. Oh

range. In the ARBAC model, the can-modify relation describes the administration
range of each administrative role. Table 1 shows an example of the can-modify. (Note.
In a role hierarchy, if role X is parent of role Y, X inherits all access rights of Y. As a
result the set of access rights for Y is a subset of access rights for X).

Under the can-modify relation, user-role assignment and permission-role assign-
ment work well, but role-role assignment is not straightforward. Role-role assignment
changes the structure of the role hierarchy, and may create unexpected side effects.
For example, if administration role PSO1 deletes role ‘E1’ in the role hierarchy, ad-
ministration range (E1, PL1) becomes unavailable. Another example is shown

Director (DIR)

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

Project lead 2 (PL2)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

Project lead 2 (PL2)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

Senior Security Officer (SSO)

Department Security Officer (DSO)

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Project 1 Project 2

�������	

���������
������	����	

Fig. 1. An example Role and Administrative Role Hierarchy

Table 1. An example of can-modify

Administrative Role Admin. Range
DSO
PSO1
PSO2

(ED, DIR)
(E1, PL1)
(E2, PL2)

 New Concept of Authority Range for Flexible Management of Role Hierarchy 345

DIR

PL1

PE1 QE1

E1

PL2

PE2 QE2

E2

ED

E

Y

X

Fig. 2. An example Out of Range Impact

in Fig.2. Suppose administration role DSO adds two roles ‘X’ and ‘Y’ as shown. If
administration role PSO1 adds an edge between PE1 and QE1, then the access rights
of ‘Y’ are inherited to ‘X’. Although ‘X’ and ‘Y’ do not belong to the administration
range of PSO1, PSO1 can change the access rights of ‘X’. To overcome these prob-
lems, the ARBAC model introduces some restrictions, called integrity principles. We
will discuss these in section 2.

ARBAC use a geometric approach, together with several other concepts for de-
scribing integrity principles. While we understand each principle, it is not possible to
deduce the reason for each of them. In this paper, we analyze the origin of ambiguity
and shortcoming included in RRA97 model. The origin is definition of authority
range in can-modify relation. We also show the way of flexible management of role
hierarchy by redefinition of authority range. This paper is organized as follows. Sec-
tion 2 reviews integrity principles for the role hierarchy management of ARBAC.
This is well described in the RRA97 model. Section 3 introduces the origin of short-
coming of RRA97, and propose new authority range concept, and the paper is then
conclusion in Section 4.

2 Integrity Principles of the ARBAC Model

ARBAC97 model consists of URA97, PRA97, and RRA97 model. The RRA97
model [7] describes integrity principles for role hierarchy management. Role hierar-
chy management has four types of operation − add a role, delete a role, add an edge
between roles, and delete an edge between roles. We begin by reviewing some defini-
tions and integrity principles grouped by these four operations.

Definition 1. A range of roles is defined by giving the lower bound x and upper
bound y, where y > x. Formally (x, y) = {z ∈ role | x < z < y}. We say x and y are the
endpoints of the range. (A range as defined here does not include the endpoints).

346 S. Oh

A

y

r1 r2

x

y’

r3
r4

X’

B

A

y

r1 r2

x

y’

r3
r4

X’

B

 Fig. 3. Encapsulated Range(x,y) Fig. 4. Non-Encapsulated Range (x,y)

Definition 2. Any range referenced in the can-modify relation is called an authority
range.

Definition 3. A range (x, y) is said to be encapsulated if ∀r1 ∈ (x, y) ∧ ∀r2 ∉ (x, y)
we have r2 > r1 ⇔ r2 > y and r2 < r1 ⇔ r2 < x.

Definition 4. A range (x', y') is said to be junior to range (x, y) if (x', y') is a subset of
(x, y).

Definition 5. The immediate authority range of a role r written ARimmediate(r) is the
authority range (x, y) such that r ∈ (x, y) and for all authority ranges (x', y') junior to
(x, y) we have r ∉ (x', y').

Definition 6. The range (x, y) is a create range if ARimmediate(x) = ARimmediate(y) or x
is an endpoint of ARimmediate(y) or y is an endpoint of ARimmediate(x).

IP1. All authority ranges must be encapsulated.

IP2. (Integrity Principle for Role Creation). The immediate parent and child of a
new role must be a create range in the hierarchy before a new role can be created.

IP3. (Integrity Principle for Role Deletion). Roles referred in can-assign, can-
revoke, and can-modify relationships cannot be deleted. This is a more restrictive
constraint, but is required to maintain the referential integrity of ranges.

IP4. (Integrity Principle for Edge Insertion). A new edge A-B can be inserted be-
tween incomparable roles A and B if

• ARimmediate(A) = ARimmediate(B), or
• (x, y) is an authority range such that (A = y ∧ B > x) ∨ (B = x ∧ A < y), then in-

sertion of AB must then preserve encapsulation of (x, y).

IP5. (Integrity Principle for Edge Deletion). i) if edge A-B is not in the transitive
reduction then it cannot be deleted. ii) if the edge being deleted is between the end
points of an authority range, this operation is disallowed.

 New Concept of Authority Range for Flexible Management of Role Hierarchy 347

PL1

PE1

E1

PL2

PE2 QE2

E2

ED

E

QE1

JQE1

DIR

Fig. 5. Modified role hierarchy of Fig. 1

Though above integrity principles are clear and useful, there are insufficiencies as
follows:

• IP1 restricts the topology of authority range. Section 3.1 describes it in detail.
• IP2 is to prevent potential risks such as those shown in Fig.2. However, the case

shown in Fig.2 is allowable. Only the operation of adding an edge from PE1 to
QE1 should be restricted. IP2 is therefore overly restrictive.

• The principles above are based on several concepts; incomparable range, encap-
sulated range, immediate authority range, and crate range. From a practical point
of view, this leads to a difficult implementation.

• Each principle has a vague rationale, and appears to be part of an ad-hoc ap-
proach. If we can find a new case that current principles cannot cover, we must
create a new principle.

• Role insertion (deletion) leads to edge insertion (deletion) or vice versa. There-
fore, we must consider integrating principles IP2 − IP5.

• We should treat role creation, role deletion, edge insertion, and edge deletion
with different way. It makes complex work of managing role hierarchy.

Crampton [8] points out shortcomings of ARBAC97 such like lack of applicability,
flexibility, coherence, and robustness. To overcome the shortcomings he proposed the
concept of ‘administrative scope’. In spite of its advantages there exists complexity of
integrity rules. Section 3 presents our new approach to relieve shortcomings of
RRA97 and complexity of Crampton’s approach.

3 New Concept of Authority Range

3.1 The Origin of Shortcomings of RRA97

RRA97 model includes an important shortcoming. Large part of integrity principles
of RRA97 is caused by the shortcoming; it is the authority range in can-modify rela-
tion. RRA97 defines an authority range AR(a,b) as follows:

AR(x,y) = { r∈R| x < r < y } (by Definition 1).

348 S. Oh

As a consequence of the definition AR(x,y), any role r ∈ AR(x,y) should keep the
features as follows:

 i) role y should be the senior role of r . It means that there should exist an edge
line from r to y

ii) role x should be the junior role of r . It means that there should exist an edge
line from x to r.

As a result, the shape of AR(x,y) resembles the ‘net’ that its all nodes have edges to
parent and to children. Encapsulated range means the shape. AR(x,y) cannot be a ‘tree’.
In the case of role creation, the insertion of a role which has no parent/child or has more
than one parent or child is not permitted in the RRA97. Because those cases make the
role does not belong to any authority ranges. In Fig.6, role x, y, and z belong to neither
AR(a,b) nor AR(A,B). To avoid the situation RRA97 requires authority ranges maintain
encapsulated range and restrict some modification operations of role hierarchy. It is a
too strong restriction for composition and modification of a role hierarchy.

3.2 New Definition of Authority Range

If we can find reasonable method making that role x, y, and z in Fig.6 belong to some
authority range, we can modify RRA97 to more flexible model. To achieve the pur-
pose we redefine authority range named NAR(x,y).

Definition 7. New authority range written NAR(x, y) is defined by the notion below

NAR(x,y) = S ∪ T ∪ U

where

• S = {r∈R | x < r < y }
• T = {r∈R | x < r < B} − {r∈R | A < r ≤ y }
• U = {r∈R | A < r < y} − {r∈R | x ≤ r < B }
• (A,B) is an immediate senior range of (x,y).

If x is the minimum role and y is the maximum role of the role hierarchy,

NAR(x,y) = { r∈R| r > x } ∪ { r∈R| r < y }.

Note. There are the other definitions of new authority range

NAR[x,y) = {r∈R| x ≤ r < y } ∪ T ∪ U
NAR(x,y] = {r∈R| x < r ≤ y } ∪ T ∪ U
NAR[x,y] = {r∈R| x ≤ r ≤ y } ∪ T ∪ U

Definition 8. The new immediate authority range of a role r written NARimmediate(r)
is the new authority range (x, y) such that r ∈ NAR(x, y) and for all new authority
ranges (x', y') junior to (x, y) we have r ∉ NAR(x', y').

The idea of NAR(x,y) is that we let every roles belong to ‘nearest’ authority range.
As a result, role x, y, and z belong to NAR[x,y] in Fig.7. It contrasts with that
AR(x,y) cannot contain x,y, and z in Fig.6. Now we prove NAR(x,y) has soundness
and clearness through Property 1.

 New Concept of Authority Range for Flexible Management of Role Hierarchy 349

B

b

r1 r2

a

b’

r3
r4

a’

A

x

y

z

B

b

r1 r2

a

b’

r3
r4

a’

A

x

y

z

Fig. 6. AR[a,b] Fig. 7. NAR [a,b]

Property 1. For any role r on a role hierarchy, there exists one only one
NARimmediate(r).

Proof. First we prove there exists at least one NARimmediate(r).

Let minR is the minimum role and maxR is the maximum role on a role hierarchy.
Then (minR,maxR) is the largest role range of the role hierarchy. If role r is on the
role hierarchy, r has parent or child role. If r has parent role, r < maxR and has child
role(s), r < minR. By definition 7, r belongs to NAR(minR,maxR). If there is no other
NAR(x,y) that r ∈ NAR(x,y), NAR(minR,maxR) is the NARimmediate(r). Thus there
exist at least one NARimmediate(r).
 Now we prove there exists only one NARimmediate(r).

Suppose there exists r ∈ NAR(a,b) and r ∈ NAR(c,d). By the basic requirement of
authority range, NAR(a,b) and NAR(c,d) can not be partially disjointed. If NAR(a,b)
⊂ NAR(c,d), then NAR(a,b) is a candidate of NARimmediate(r) else NAR(c,d) is a can-
didate of NARimmediate(r). Suppose NAR(c,d) is chosen as a candidate of NARimmedi-

ate(r). If there is no NAR(e,f) that NAR(e,f) ⊂ NAR(c,d) and r ∈ NAR(e,f),
NAR(c,d) is the NARimmediate(r) else NAR(e,f) can be chosen as a new candidate of
NARimmediate(r). If we continue this process until we cannot find new candidate, the
last candidate is the NARimmediate(r).

3.3 The Effects of New Authority Range

Property 1 shows that new authority concept NAR(x,y) is clear and has no ambiguity.
If we replace AR(x,y) in can-modify relation with NAR(x,y), we can relieve some
restrictions of RRA97. (For convenience we call RRA97 model using our new author-
ity range by the name of ‘RRA-NAR’).

Encapsulated Range
In the RRA97 model, encapsulated range is a base concept for integrity principles.
IP1 requires all authority ranges should be encapsulated, or some roles may exist out
of authority range. But RRA-NAR has no need of encapsulated range concept because
every role on a role hierarchy belongs to one NAR(x,y). Thus we can ignore IP1.

350 S. Oh

Role Creation
RRA97 requires two conditions for role creation. First, new role should have both
parent and child role. Second, the immediate parent and child of a new role must be
an encapsulated range or be in an encapsulated range in the hierarchy before a new
role can be created. IP2 describes the conditions. But RRA-NAR requires new role
should have parent or child role and the parent or child role should be in the
NAR(x,y) (which belongs to an administration role executing the role creation). RRA-
NAR is more relievable model than RRA97.

Role Deletion
RRA97 requires that roles referred in can-assign, can-revoke, and can-modify rela-
tionships cannot be deleted through IP3. If they are deleted, we cannot control author-
ity of administration roles. RRA-NAR maintains IP3.

Edge Insertion
RRA97 has two rules for edge insertion. The roles, between which the edge is in-
serted, must have same immediate authority range; or if the new edge connects a role
in one authority range to a role outside the range, encapsulation of the authority range
should not be violated. RRA-NAR requires the roles, between which the edge is in-
serted, should have same immediate NAR(x,y). RRA-NAR does not require second
rule of RRA97 because RRA-NAR does not have encapsulated concept.

Edge Deletion
RRA97 requires a compensatory operation before edge deletion. For example, if we want
to delete an edge QE1-JQE1 in Fig.5, we need to insert two edges E1-QE1 and JQE1-
PL1. And RRA97 disallows an edge deletion if the edge being deleted is between the end
points of an authority range. RRA-NAR allows that we delete an edge A-B without com-
pensatory operation if role A has no child or role B has no parent. For example, edge
z-r1, y-r2, and r2-x in Fig. 6 can be deleted without any compensatory operation.

As we can see RRA-NAR model is more flexible than RRA97. IP1 and IP2 are ig-
nored; IP4 and IP5 are relieved in the RRA-NAR model. Further, RRA-NAR sup-
ports various topologies of authority range that RRA97 cannot do. Fig.8 shows the
fact. Finally, authority range of RRA-NAR can be dynamically changed by senior
administration role’s activity. For example, NAR(a,b) is changed after two edge inser-
tions in Fig.9. It shows strong flexibility of RRA-NAR.

Fig. 8. Possible topologies of NAR(X,Y)

 New Concept of Authority Range for Flexible Management of Role Hierarchy 351

B

b

r1 r2

a

b’

r3
r4

a’

A

x

y

z

B

b

r1 r2

a

b’

r3
r4

a’

A

x

y

z

Fig. 9. Adjustment of NAR(a,b) after two edge insertions

4 Application Examples of New Authority Range

Our new authority range concept is useful for real world applications. In this chapter
we show real application examples of new authority range.

Separation of Duty (SOD)
SOD is a security principle used in formulating multi-person control policies, requir-
ing that two or more different people be responsible for the completion of a task or set
of related tasks. The purpose of SOD is to discourage fraud by separating the respon-
sibility and authority for an action, or task, over many people. One of difficulty of
ARBAC model is that SOD cannot be implemented on the role hierarchy. Let’s sup-
pose Sales_clerk and Salesman have a SOD relationship (Case A of Fig.10). Both
Sales_clerk and Salesman should have parent role, such like Sales_manager, by the
role hierarchy principle of ARBAC model. As a result Sales_manager inherits author-
ity of both Sales_clerk and Salesman, and can violate SOD principle. ARBAC model
cannot solve the problem. If we adopt our new authority concept, we can make role
hierarchy as shown in Case B of Fig.10, and Sales_manager cannot inherit authority
of Sales_clerk and Salesman. Our new authority range brings ability of implementing
SOD to ARBAC model.

Sales_clerk Salesman

Sales_manager

Sales_dept

Sales_account Sales_clerk Salesman

Sales_manager

Sales_dept

Sales_account

�������	�������	�������	�������	 ������
	������
	������
	������
	

Fig. 10. SOD and role hierarchy

352 S. Oh

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

������������

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

������������

��������	
�

�������	�������	�������	�������	 ������
	������
	������
	������
	

Fig. 11. Temporal role insertion

Temporal Role Creation
Suppose that a project team wants to employ Tom as a part time worker for two
months. Security manager John for the project team wants to give minimum authority
of the project team. He wants to give partial authority of role E1 to Tom, and tries to
make junior role of E1 for assigning partial authority of E1. But it is impossible job
because it is out of authority range of John. The best choice is that John assigns Tom
to E1 role (Case A of Fig.11). As a result, Tom owns extra authority, and it is unde-
sirable situation. If we bring our new authority range to ARBAC model, John can
make junior role ‘Part_worker’ under PL1, and assign Tom to ‘Part_worker’. John
can give partial authority of E1 to ‘Part_worker’. As a result Tom owns partial author-
ity of E1 (Case B of Fig.11).

This situation may apply to delegation. Most of delegation model on ARBAC model,
delegator makes sub role and assigns delegatee to the sub role. The sub role is regarded
as special role because role hierarchy cannot contains the sub role on ARBAC model. If
we adopt our new authority range, we can regard the sub role as general role.

5 Conclusion

In large organizations or information systems, decentralized role management is re-
quired. One of main issues in these environments is a role hierarchy management. We
have introduced a new concept of authority range for those environments. Our con-
cept gives strong flexibility to role hierarchy management. We can apply NAR(x,y) to
can-assign and can-revoke relationships include with can-modify. If NAR(x,y) com-
bines with other methods, like Crampton’s administrative scope[8], it makes strong
synergy for effective decentralized role management.

References

1. Sandhu, R.: Rationale for the RBAC96 Family of Access Control Models. Proc. of ACM
Workshop on Role-Based Access Control (1995)

2. Ferraio, D., CuginiJ., Kuhn, R.: Role-based Access Control (RBAC): Features and motiva-
tions. Proc. of 11th Annual Computer Security Application Conference (1995)

 New Concept of Authority Range for Flexible Management of Role Hierarchy 353

3. Sandhu, R., Coyne, E., Feinstein, H., Youman,C.: Role-Based Access Control Models.
IEEE Computer, Vol.29, No.2 (1996)

4. Gavrila, S.I., Barkley, J.F.: Formal Specification for Role Based Access Control User/Role
and Role/Role Relationship Management. Proc. of the 3rd ACM workshop on Role-Based
Access Control (1998)

5. Sandhu, R., Bhamidipati, Munawer, Q.: The ARBAC97 Model for Role-Based Administra-
tion of Roles. ACM Trans. on Information and Systems Security (TISSEC), Vol.2 (1999)

6. Sandhu, R. Munawer, Q.: The ARBAC99 Model for Administration of Roles. Proc. of An-
nual Computer Security Applications Conference (1999)

7. Sandhu, R., Munawer, Q.: The RRA97 Model for Role-Based Administration of Role Hier-
archies. Proc. of Annual Computer Security Applications Conference (1998)

8. Crampton, J., Loizou, G.: Administrative scope: A foundation for role-based administrative
models. ACM Transactions on Information and System Security (TISSEC), Vol.6 , Issue 2
(2003)

Role-Based Access Control Model
for Ubiquitous Computing Environment

Song-hwa Chae1, Wonil Kim2,�, and Dong-kyoo Kim3

1 Graduate School of Information and Communication,
Ajou University, Suwon, Korea

portula@ajou.ac.kr
2 College of Electronics and Information Engineering,

Sejong University, Seoul, Korea
wikim@sejong.ac.kr

3 College of Information and Computer Engineering,
Ajou University, Suwon, Korea

dkkim@ajou.ac.kr

Abstract. Ubiquitous computing is characterized by freedom of move-
ment in both time and location, which means users expect to receive
services anytime and anywhere. Therefore, the security service should
consider the factor of location and time. As a basic authorization service
mechanism, RBAC has been used in the security community for access
control model. In order to apply RBAC to ubiquitous computing envi-
ronment, it is necessary to add both location and time dimension. In
this paper, we propose new access control model supporting time and
location dimensions. The proposed access control model can effectively
support various ubiquitous computing environments.

1 Introduction

As wireless networking has become more common, ubiquitous computing begins
to receive increasing attention as new paradigm after Internet [1]. Invisible and
ubiquitous computing aims at defining environments where human beings can
interact in an intuitive way with surrounding objects [2]. In order to accommo-
date user’s frequent movement and accessing resources anytime and anywhere,
the complexity of security is increased and the security service should consider
the factors of location and time. As with security services in wired network, it
is essential for service providers to know user’s information such as who con-
nect and what is user’s rights. It can be supported by proper authentication
and authorization methods [11]. Role-Based Access Control (RBAC) is one of
famous access control model [3][4]. RBAC has shown to be policy neutral [5]
and supports security policy objectives as the least privilege and static and dy-
namic separation of duty constraints [6]. In order to protect abusing rights, the
user must have the least privilege. For that reason, several models with con-
straints - time and location are suggested for the least privilege service such as
� Author for correspondence +82-2-3408-3795.

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 354–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Role-Based Access Control Model for Ubiquitous Computing Environment 355

TRBAC (Temporal RBAC) [5] and SRBAC (Spatial RBAC) [8]. However, these
models consider just one dimension, either temporal or spatial. For the ubiqui-
tous computing environment, both dimensions should be supported for RBAC
model. These constraints are provided as a peculiar feature of environment. In
this paper, we propose an access control model for ubiquitous computing envi-
ronment that supports temporal and spatial dimensions. We call these factors
situation information. We suggest new expression of RBAC with situation in-
formation. This paper is organized as follows. Chapter 2 surveys related works.
Chapter 3 formally presents the access control model for ubiquitous computing
environment. Chapter 4 discusses example scenarios and we compare the pro-
posed model with other models in Chapter 5. Chapter 6 concludes with future
works.

2 Related Works

2.1 Role-Based Access Control (RBAC)

RBAC uses the concept of role. It does not allow users to be directly associated
with permissions, instead each user can have several roles and each role can have
multiple permissions. There are three components of RBAC: users, roles, and
permissions. Each group can be represented as a set of user Users, a set of role
Roles, and a set of permission Permissions. Two different types of associations
must be managed by the system; one is the association between user and role,
the other is the association between role and permission. It is characterized as
user-role (UA) and role-permission (PA) relationships.

Definition 1 (RBAC Model). The RBAC model consists of the following
components [6]:

– Users,Roles, Permissions, Sessions
– User assignment : UA ⊆ Users×Roles
– Permission assignment : PA ⊆ Permissions×Roles
– Session Users(s : Sessions) → Users
– Session Roles(s : Sessions) → 2Roles

– Role hierarchy : RH ⊆ Roles×Roles

2.2 Temporal RBAC (TRBAC)

There are many situations that roles may be available to users at certain time
periods, and unavailable at others. TRBAC is an extension of RBAC that has
time constraint. It supports periodic role enabling and disabling [5]. It provides
temporal dependencies among the enabling and disabling of different roles, ex-
pressed by means of role triggers. Role trigger actions may be either immediately
executed, or deferred by an explicitly specified amount of time. For example,
{(PE).([1/1/2000, ∞], night-time, VH:enable doctor-on-night-duty)} presents
that doctor-on-night-duty role must be enabled during the night. {(RT).enable
doctor-on-night-duty H:enable nurse-on-night-duty} means that the role nurse-
on-night-duty must be enabled whenever the role doctor-on-night-duty is.

356 S.-h. Chae, W. Kim, and D.-k. Kim

2.3 Generalized Temporal RBAC (GTRBAC)

GTRBAC is an extension of the TRBAC [9]. TRBAC provides constraints only
on role enabling and triggers, considerably limiting its use in many diverse real
world application requirements. The GTRBAC model incorporates a set of lan-
guage constructs for the specification of various temporal constraints on roles,
including constraints on their activations as well as on their enabling times, user-
role and role-permission assignment. It introduces the separate notions of the
enabled and activated states of role, and provides constraints and event expres-
sions associated with both these states. An enabled role indicates that a user
can activate it, whereas an activated role indicates that at least one subject
has activated a role in a session. For example, ((10am,3pm),assignu Carol to
DayDoctor) indicates that Carol can assume the DayDoctor role everyday be-
tween 10am and 3pm. c1 =(6 hours, 2 hours, enable NurseInTraining) specifies
a duration constraint of 2 hours on the enabling time of the NurseInTraining
role, but this constraint is valid for only 6 hours after the constraint c1 is en-
abled. enable DayNurse enable c1) presents that constraint c1 is enabled once
the DayNurse is enabled, which means now the NurseInTraining role can be
enabled within the next 6 hours [10]. Although this model is well defined by
mathematical expression, it does not consider location constraint.

2.4 Spatial RBAC (SRBAC)

The mobile computing devices and wireless networks are dramatically utilized
by many organizations. The users frequently access to networked computer re-
sources anywhere and anytime, through their mobile terminals. For that reason,
the system should be able to base its access decisions depending on the spatial
dimension in which the user in situated. SRBAC [8] is an extension of the RBAC
model. It is able to specify spatial constraints on enabling and disabling of roles.
It defines the concept of Zone for location. Zone is a similar concept to the cell of
cellular network and logical location domain. Permissions are assigned to Zone
in a role by a Location Permission Assignment List (LPAL) that is presented
by matrix. As this model supports spatial dimension, it has some problems. It
represents assignment among role, location and permissions by matrix. In real
environment, there are a lot of locations so that this model should have ma-
trix. It is also difficult to divide an area into Zones. The proposed access control
model solves these shortcomings by employing hierarchy structure for expressing
location information.

2.5 Other Researches

There are some other researches to extend RBAC model for various environ-
ments. H. F. Wedde et al.[14] suggests extended RBAC model for distributed
authorization and authenication. Although this model consider location struc-
tures, it focuses on modeling the authorization process with in highly distrubuted
yet predefined organizational relationships. S. Fu et al.[15] researches Shared

Role-Based Access Control Model for Ubiquitous Computing Environment 357

Resource Access Language(SRAL) for the specification of access patterns by a
mobile device. They only focues on user mobility problem that is shared resource
when mobile client relates their networks.

3 Role-Based Access Control Model for Ubiquitous
Computing Environment

3.1 The Proposed Access Control Model

In order to incorporate RBAC model in a mobile environment such as ubiquitous
computing environment, the role for each location in an organizational domain
has to be defined [8]. In many organizations, functions may have limited or pe-
riodic temporal duration [5]. SRBAC, which is an extension of RBAC, incorpo-
rates location information associated with roles in order to permit location-based
definition of security policy. TRBAC, which is another extension of RBAC, con-
siders time dimension. In spite of many researches on TRBAC and GTRBAC
(Generalized TRBAC) [7], they still have some problems such as inappropriate
in representing situation information. On the other hand, certain domains have
to consider both temproal and spatial dimensions at the same time. We propose
new access control model that support the ubiquitous computing environment.
It can support not only temporal and spatial dimension alone but also two di-
mensions together.

3.2 Location Hierarchy

Most of location information is consists of leveled information. For example, a
room in a university is a part of a building and the building is a part of the
university. As shown in Figure 1, room 202 is a room in the second floor, which
is one of floor in the Engineering-building, one of building of university A. If a
user A has access permission in all rooms of Engineering-building, the expression
should include all names of each room. In set expression that is normally used
in ubiquitous computing model, the expression is {Auditorium, #201, #202,

Fig. 1. An example of location hierarchy

358 S.-h. Chae, W. Kim, and D.-k. Kim

#206, Corridor,, 10th floor}. The elements of location set increases in geomet-
ric progression when the number of permitted location is increased. However,
the hierarchical expression is able to represent this by a simple way. In the pro-
posed model, A’s location information is {Engineering-Building}. It reduces the
number of expression and operation. The proposed model also supports an ex-
pression for a few excluding locations in big permitted area. For example, a user
B is able to access student data in all of university area except Multimedia room
in Library. Common set expression should represent all location names without
Multimedia room. However, the proposed model has easy expression method
such as {UniversityA\-\ UniversityA@Library\MultimediaRm}. The expression
’\−\’ means exception. The detail of expression is discussed in 3.5. In addition,
common set expression needs unique name for all location in global area but the
proposed model needs it just in small local area.

3.3 Role States

The proposed access control model supports situation information that consists
of time and location constraints for ubiquitous computing environment. The
situation information consists of three role states. We defined three role states
such as Assign, Disable and Enable. The user’s role state is changeable during
a session. When a user logs into system, the system assigns roles to user. At
this point in time, the role state is Assign. The system checks time and location
constraints, and then the role state is changed to Disable or Enable. Figure 2
shows role states of the proposed access control model.

– Assign : A role is assigned to a user.
– Disable: The role is deactivated when constraints are unsatisfied and the

resources are not accessible at this state. The state transits to Enable when
both location and time are satisfied.

– Enable: The role is activated when constraints are satisfied. By this activa-
tion, the user is able to access resources at this state. The state transits to
Disable when location or time constraints are unsatisfied.

Fig. 2. The role states of the proposed model

Role-Based Access Control Model for Ubiquitous Computing Environment 359

3.4 Components

We define Locations, Times, Constraints and EnableRoles that represents the set
of locations, times, constraints and enabled roles. The proposed model consists
of the following components.

– Users,Roles, Permissions, Sessions, Locations,T imes, Constraints,
EnableRole

– User assignment : UA ⊆ Users×Roles
– Permission assignment : PA ⊆ Permissions×Roles
– Session Users(s : Sessions) → Users
– Session Roles(s : Sessions) → 2Roles

– Role hierarchy : RH ⊆ Roles×Roles
– Location hierarchy : LH ⊆ Locations× Locations
– Constraints UA(c : Constraint) → UA
– Constraints = Locations|T imes|Locations× T imes
– Assigned users(r : Roles)→ 2Users

– Assigned permissions(r : Roles)→ 2Permissions

3.5 Syntax and Semantics

In this section, we present the proposed model by introducing its syntax and
semantics.

Definition 2 (Discrete Location Expression). Given locations l1, l2, l3, ...,
lj where j is integer, a location expression L is defined as L = {l1, l2, l3, ..., lj},
e.g. L={ResearchCenterBuilding A, Student Building} represents the set of lo-
cations which is research center building A and student building.

Definition 3 (Adjacent Location Expression). Given locations li, li+1, li+2,
..., lk where i and k are integer, a location expression L is defined as L = {li : lk},
e.g. L = {ResearchCenterBuilding A : StudentBuilding} represents the set of all
locations which is from research center building A to student building.

Definition 4 (Location Hierachy Expression). Location information l is
defined as l = l1@l2\l3\l4 where l1 is the highest level in location structure and
l2 <= l3 <= ... <= lk. e.g. l = UnivA@Engineering − building\SecondFL\Rm202
represents room 202 in Engineering-building of University A.

Definition 5 (Exception Location Expression). Given location l excepting
in location l1, a location expression L is defined as L = {l\ − \l1}. \ − \ means
location exception. e.g. L = {UnivA@reserchbuilding\ − \SecondFL} repre-
sents the set of locations which is research center building without second floor
in university A.

Definition 6 (Discrete Time Expression). Given times t1, t2, t3, ..., tj where
j is integer, a time expression T is defined as T = {t1, t2, t3, ..., tj}, e.g. T =
{Monday, Friday} represents the set of times as Monday and Friday.

360 S.-h. Chae, W. Kim, and D.-k. Kim

Definition 7 (Continuous Time Expression). Given times ti, ti+1, ti+2, ...,
tk where i and k are integer, a location expression T is defined as T = {ti : tk},
e.g. T = {Monday : Friday} represents the set of all times from Monday to
Friday. Therefore, T = {Monday : Friday} = {Monday,Tuesday,Wednesday,
Thursday, Friday}

Definition 8 (Location Constraint Expression). Given location values,a
location constraint expression LC is defined as LC = {l1, l2, l3, ..., lj |li : lk} where
i, j and k are integer.

Definition 9 (Time Constraint Expression). Given time values, a time
constraint expression TC is defined as TC = {t1, t2, t3, ..., tj |ti : tk} where i,
j and k are integer

Definition 10 (Constraint Expression). Given a role, a constraint expres-
sion C is defined as C = LC |TC |LC × TC

Definition 11 (Role Status Expression). Given a role R, we represent three
kinds of role status S such as assign, enable and disable. Role status expression
S is defined as S = {Assign,Enable,Disable}. The role’s status is defined as
RS = {assignR, enableR, disableR}

Definition 12 (User/Role/Constraint Expression). Given a user u, roles
r and constraints c, the proposed RBAC assignment expression is defined as
u : {c,R} where u Users, c Constraints, e.g. A : {UnivA@studentbuilding, 11 :
00 : 13 : 00, GradStudentUser} represents that user A has gradate student role
in Student building when it is from 11:00 to 13:00.

4 Scenarios

The proposed access control model can be applied to the following three cases
of environment such as with only time constraint, only location constraint, and
both constraints. In this section we will discuss the three scenarios in detail.

The first scenario is where the time constraint alone is required. For in-
stance, the role of part-time staff in a hospital is to be authorized to work
only on certain days or times. The time constraint can enable or disable roles
at certain time periods. In this model, constraint expression is C = TC and
TC = {t1, t2, t3, ..., tj |ti : tk} where i, j and k are integer. Alice is a part-time
nurse of the hospital and works from 1 p.m. to 6 p.m. on workday. Bob is also
a part-time nurse of the same hospital and works from 6 p.m. to 10 p.m. on
workday. Alice’s role, part-timeNurse is Disable state at first time, and then it
is changed to Enable state from 1 p.m. to 6 p.m. The Alice’s role state moves to
Disable except this time. In this case, the expression is as follows.

– Alice: { 13:00 : 18:00, enable part-timeNurse }
– Bob : { 18:00 : 22:00, enable part-timeNurse }

Role-Based Access Control Model for Ubiquitous Computing Environment 361

The second scenario is where the location constraint alone is required in or-
ganizations. It normally happens in the following cases in ubiquitous computing
environment. For example, the case of a doctor that has permission to access a
patient record that is only accessed in designated area. The location constraint
can enable or disable roles at assigned locations. The constraint expression is
C = LC and LC = {l1, l2, l3, ..., lj |li : lk} where i, j and k are integer. Alice is a
physician who can access patient records in her office. Bob is a surgeon who can
access patient records in his office and operating rooms. The expression for this
case is as follows.

– Alice : { Room301, enable accessPatientRecords }
– Bob : { Room302, OperatingRooms, enable accessPatientRecords }
The last scenario is where the time and location constraints are required.

In reality, most ubiquitous computing environment should consider both time
and location factors. For instance, the case of part-time nurse who works in the
operation room is authorized only on working days or times. It is necessary to
apply both time and location constraints. Time and location constraints can
restrict in his/her permissions. The constraint expression is C = LC ×TC . Alice
is a part-time nurse during nighttime in the operation room. The expression of
the proposed access control model is the following:

– Alice:{OperationRoom, 20:00 : 4:00 , part-timeNurse}

5 Comparison

We compare the proposed model with GTRBAC and SRBAC in the following
business scenarios. Alice works with Bob from company’s partner. When Bob
needs to access some resource such as printer in meeting room at restricted time
periods from 10 a.m. to 3 p.m. In this case, Bob’s role has to restrict time and

Fig. 3. The role states of accessPrinter

362 S.-h. Chae, W. Kim, and D.-k. Kim

Table 1. The proposed model, GTRBAC and SRABC

Support GTRBAC SRBAC The proposed model
Temporal dimension Yes No Yes
Spatial dimension No Yes Yes
Location hierarchy No No Yes

location dimensions. In GTRBAC, it is represented as the following expression.
([10am, 3pm], assignU Bob to accessPrinter). There is no way to represent lo-
cation restriction together. In SRBAC, they use location permission assignment
list that contains role name, locations and permission. Therefore, it also does
not have time expression. On the other hand, the proposed model is able to rep-
resent location and time constraints together as following. Bob:{MeetingRoom,
10:00:15:00, Enable accessPrinter}.

Figure 3 shows states diagram of the above example.
In the table 1, the proposed model is compared with GTRBAC and SRBAC

about supporting factors such as temporal and spatial dimensions and location
hierarchy.

6 Conclusion and Future Works

Nowadays, as wireless networking became more common, ubiquitous computing
is receiving increasing attention. In this environment, the system should be able
to accommodate the user’s temporal movement. Consequently, adapting security
service is more difficult than common network, since it has to consider user’s sit-
uation. RBAC is widely used access control method for authorization. In order to
adapt to these changing environment, it is necessary to adjust time and location
dimensions for more efficient and secure RBAC model. We propose new access
control model that supports situation information for ubiquitous computing en-
vironment. It is provided as a peculiar feature of environment. In this paper,
we defined syntax and semantics and also illustrated the applicability of the
proposed access control model by showing various scenarios. The proposed ac-
cess control model can be dynamically applied to various ubiquitous computing
environments.

References

1. F. Stajano and R. Anderson, The Resurrecting Duckling: Security Issues for Ubiq-
uitous Computing, IEEE security and Privacy (2002)

2. L. Bussard and Y. Roudier, Authentication in Ubiquitous Computing, In Proceed-
ings of UbiCom2002 (2002)

3. E. Choun, A Model and administration of Role Based Privileges Enforcing Sepa-
ration of Duty. Ph.D. Dissertation, Ajou University (1998)

4. G. Ahn and R. Sandhu, Role-Based Authorization Constraints Specification, ACM
Transactions on Information and System Security, Vol3, No4 (2000) 207-226

Role-Based Access Control Model for Ubiquitous Computing Environment 363

5. E. Bertino, P. A. Bonatti and E. Ferrari, TRBAC: A Temporal Role-Based Access
Control Model. ACM Transactions on Information and System Security, Vol4, No3
(2001) 191-223

6. D.F.Ferraiolo, R.Sandhu, E.Gavrila, D.R.Kuhn and R.Chandramouli, Proposed
NIST Standard for Role-Based Access Control, ACM Transactions on Information
and System Security, Vol4, No3 (2001) 224-274

7. J.B.D. Joshi, E. Bertino, U. Latif and A. Ghafoor, A Generalized Temporal Role
Based Access Control Model, IEEE Transactions on Konwledge and Data Engi-
neering, Vol17, No1 (2005) 4-23

8. F. Hansen and V. Oleshchuk, SRBAC: A Spatial Role-based Access Control Model
for Mobile Systems, In Proceedings of Nordec 2003, Gjovik, Norway (2003)

9. J.B.D. Joshi, E. Bertino, and A. Ghafoor, Hybrid Role Hierarchy for Generalized
Temporal Role Based Access Control Model, In Proceedings of the 26th Annual
International Computer Software and Application Conference (2002)

10. J.B.D. Joshi, E. Bertino, and A. Ghafoor, Temporal Hierarchy and Inheritance
Semantics for GTRBAC, In proceedings of 7th ACM Symposium on Access Control
Models and Technologies, Monterey, CA (2002)

11. S. Chae, W. Kim and D. Kim, Efficient Role Based Access Control Method in
Wireless Environment, Lecture Notes in Computer Science 3260 (2004) 431-439

12. S. Chae, W. Kim, and D. Kim, A Novel Approach to Role-Based Access Control,
Lecture Notes in Computer Science 2660 (2003) 1060-1068

13. S. Chae, W. Kim, and D. Kim, Role-based Access Control using Neural Network,
In Proceedings of SCI2003 Vol2 (2003) 36-40

14. H.F. Wedde and M. Lischka, Role-based Access Control in Ambient and Remote
Space, In Proceedings of the 9th ACM symposium on Access control models and
technologies (2004)

15. S. Fu and C. Xu, A Coordinated Spatio-Temporal Access Control Model for Mobile
Computing in Coalition Environments, In Proceedings of 19th IEEE International
Parallel and Distributed Processing Symposium (2005)

J. Song, T. Kwon, and M. Yung (Eds.): WISA 2005, LNCS 3786, pp. 364 – 376, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing Security Auditing Protocol
with Web Browsers

Ho Jung Lee and Jung Hwan Song

Department of Mathematics, Hanyang University,
17 Haengdang-dong, Seongdong-gu, Seoul 133-794, Korea

camplab@ihanyang.ac.kr, camp123@hanyang.ac.kr
http://math.hanyang.ac.kr/camp

Abstract. The most of users of personal computer use web browsers such as
MS(Microsoft) Internet Explorer, Mozilla Firefox, and so on for accessing to
internet. Especially MS Internet Explorer which is used for internet access is a
module to execute local files and to install softwares that are activated by install
shield. Also Explorer is the same as Shell. Analyzing “index.dat” log which is
the history of executing files and accessing web sites makes security audit ef-
fective. In this paper, by analyzing Windows “index.dat” and Mozilla Firefox
cache files with time analysis, we suggest a method to perform auditing of cy-
ber crimes such as information leakage and hard disk vulnerability.

1 Introduction

Since highly efficient computers and high speed networks have been popularized, lots
of information are easily shared through internet. Also most of hard copied documents
are converted into electronic documents, and it is easy for someone to transfer elec-
tronic documents from his computer to the others by e-mail, P2P, ftp, and so forth.
Particularly public agencies and companies lead this work, but there are risks such as
information leakage and data hijackings against it’s convenience. “Information Leak-
age” is defined as “The accidental or intentional release of information to someone
before it is made available to the general public.” [1], and if someone who illegally
flow out some information is in conflict with the laws or regulations as the follows[2].

• Disclosure of secret
• Interference of duty
• Interference of execute of public duty
• Larceny
• Breech of duty

By the statistical data, the rate of intentional information leakage is 80% by inside and
20% by trespassers[3]. It is important not only preventing information leakages, but
also gathering evidences after crimes so that we take appropriate action against the
crimes. So the recognition of information leakage is an important category of security
auditing. Mostly security auditing on personal computer seems to depend on auditor’s
abilities, which make indefinite amount of time and human resources. Thus it is easy

 Designing Security Auditing Protocol with Web Browsers 365

for expert user to avoid auditing by perfect deleting log files and killing links of file
on disk for a short time. In this paper, we suggest a security auditing protocol, against
intentional information leakage through internet with analyzing web browser’s log
files. And, we deal with analyzing MS Explorer log files that are History “index.dat”,
Temporary “index.dat” and Cookie “index.dat” using Computer Forensics[4][5][6]
and MAC times. In addition, the security auditing protocol contains the case of using
other web browser Mozilla Firefox.

2 Logs of Web Browser in Windows

The log is defined as a record that describes events that occur during an operation,
and log file means a file in which system record special events[7]. In this section, we
analyze “index.dat” log for MS Internet Explorer and cache files for Mozilla Firefox.

2.1 “Index.dat” Log

The “index.dat” is a binary format log containing information about internet sites
accessed by MS internet explorer and Windows. So this “index.dat” must be paid
attention at security auditing. The “index.dat” is recorded history information of MS
Internet Explorer, internet cache, cookies, user data and special events on Explorer.
Note that the size of space for private information of user is 128 Kbytes per record,
there are sensitive information besides cookies, such as use, modify, copy, distribute,
transfer, publicly display, publicly perform, reproduce, publish, sublicense, create
derivative works and so on.

It is impossible to delete “index.dat” in Explorer or Command windows, and trying
to delete “index.dat” brings down “Access violation error” in Windows. It means that
“index.dat” is used in operating system. By the above reason, we know that “in-
dex.dat” always exists in Windows. As the above, our security auditing protocol with
using “index.dat” is able to be applied in the most of Windows system.

2.1.1 Specification of “Index.dat”
There are three different types “index.dat” with the same filename and extension in
several folders. They have different roles in each others as the follows.

1) Temporary “index.dat” : The most of information about address of accessed sites
and image files in web pages are recorded in this “index.dat”. The information in
“index.dat” can not be deleted even if user executes “Delete temporary internet
files” Explorer command and only temporary internet files are deleted.

2) Cookies “index.dat” : The contents in this type of "Index.dat" are information in
the cookie list which contains cookies of accessed sites by MS internet explorer.

3) History “index.dat” : Every information about URL which is accessed by MS
Explorer is recorded in this type of “index.dat”. URL contains following two
parts. The one indicates what kind of resource it is addressing, such as http, ftp,
file, and so on. The other contains the address of the computer where it is located
as well as the path to the file. History “index.dat” is created in every week and is
backed up every two month.

366 H.J. Lee and J.H. Song

2.1.2 Structure of “Index.dat”
The header of “index.dat” contains data which verify “index.dat” has been made up
by specified information of version such as “Client UrlCache MMF Ver 5.2”, and the
fixed length of data with 0x0 (zero) after information of version. Thus we cannot open
“index.dat” with usual application such as Notepad and Wordpad, because they regard
zero sequence as the end of file.

Thus the usual applications such as Notepad and Wordpad can open only header
because they regard zero sequence as the end of file. The body of “index.dat” is con-
nected after end of zero sequence. It is hard to recognize the start and the end of data
by the structure.

Temporary, Cookie and History “index.dat” contain the following data as in the
Table 1. The column “offset bytes” in the Table 1 indicates size of bytes from starting
tag of URL information.

Table 1. Public specification in “index.dat”

Offset bytes Description
0x00 Starting tag of URL
0x04 Length in stored block
0x08 Last modified time
0x10 Last accessed time
0x38 Cache directory index
0x3c Offset to file name
0x44 Offset to URL header
0x64 “OBADFOOD” sign
0x68 URL

History, Temporary and Cookies “index.dat” have different data in each other, but
they have same following 5 data areas.

1) URL : In this data area, URL of sites and URL of files that explorer has accessed
are recorded.

2) REDR(Redirect) : This data area is a kind of secondary storage which contains
the information about accessed sites that has not been stored in folder of tempo-
rary internet files. It is also called dynamic file and contains sensitive information
such as ID, password, and so on. Also, there are information about redirected
pages form URL.

3) LEAK : Same as REDR.
4) HASH : Hash values are used for fast indexing.
5) BADFOOD : The “BADFOOD” marks that are stored in the last records of the

information, are called "OBADFOOD" because they have the hexadecimal values
as the form "0D F0 AD 0B". This is managed only by some memory manage-
ment process but does not permit any other applications to refer it. It cannot be
referred from security auditing.

 Designing Security Auditing Protocol with Web Browsers 367

The History “index.dat” contains 3 additional data with the data as described above in
the Table 1 and starting addresses of each data are not fixed. The additional data are
follows.

1) File name : The accessed file names in URL
2) URL header : URLs and URLs type which consist of HTTP, FTP, TELNET,

MAILTO, MSINST, FILE
3) Padding : Padding bytes which consist of the form“0D F0 AD 0B”

Temporary “index.dat” contains different information from History “index.dat”. The
header of Temporary “index.dat” contains addresses of hidden cache folders which
have html of sites, images, and web loading files accessed by Explorer. For example,
it looks as in the Fig. 1, and names of hidden cache folders can be extracted to the
Table 2 by the Fig. 1. All information of Temporary “index.dat” are equal to History
“index.dat” except information of hidden cache folder. The name of hidden cache
folder is made by random.

The URLs information of Cookies “index.dat” is similar to the URLs information
of History “index.dat”, and the URLs area which is located at a distance of 68 bytes is
changed to “cookie” in the Table 1. Cookies “index.dat” contains following three
more information except information of these and the starting addresses of each data
are not fixed.

Address Hexadecimal value Statement

Fig. 1. Example of header of Temporary “index.dat”

Table 2. Information of cache folder in Temporary “index.dat”

Hidden cache folder

9DN3G1HZ , SH6781A7 , KV0LYR4H , WL87CF0D, H80VTTSD
AX9AZ2LS , XFVZ59SE , SB5JAQ3X, PWGZDPWD , EL1IJQHK
JVXFBT4W , 0VPFQINP, 100N5LSH , YDLQR294 , FFHZRDWW
KFFVYGH1, M3IZY1Y7 , KH4TEV0P , EPSR2DA5 , WD67KT6J

368 H.J. Lee and J.H. Song

1) URL header : The URLs of sites which distribute the cookies
2) File name : Cookie file name
3) Padding : Padding bytes which consist of the form “0D F0 AD 0B”

The MAC times(“last modified time”, “last accessed time” and so on) in History,
Temporary and Cookie “index.dat” are recorded by the forms in hexadecimal, and
these are specified with a special type of “NT timestamp”. The type has been used
after Windows NT first issued, and the hexadecimal values are encoded with a
method which has not been publicized. For decoding this hexadecimal values to GMT
times, we use the “w32tm.exe” program supported by Windows. For example, if the
hexadecimal value of the form “F0 DE 36 5A 14 3E C4 01” is decoded by
“w32tm.exe” in the DOS mode command window, “147332 02:44:20.7030000 -
2004-05-20 AM 11:44:20 (local time)” is returned. The first 6 digits of return value is
not important information because it is just a hashed value. We know that the time is
expressed in minimum unit of which CPU can indicate. When we construct tools for
security auditing, we use “COleDateTime” class(supported by Windows SDK),
“FILETIME” structure and “SYSTEMTIME” structure[8][9] instead of using
“w32tm.exe”, because “w32tm.exe” uses much resources compared to the others.

2.1.3 Locations of “Index.dat”
The “index.dat” is stored in different folders by each version of Windows. The loca-
tions of “index.dat” are shown in the Table 3 and 4 by the version of Windows. How-
ever “index.dat” of MS internet explorer 4 or older version is included in explorer and
there are some files of similar function called “mm256.dat” or “mm2048.dat”. In this
paper, we consider MS internet explorer 5.x or more. The location of “index.dat”
depends on not only version of Windows but also whether or not user profiles act.
Windows make it difficult to find “index.dat”. Every folder contains “index.dat” also
contains “desktop.ini” which has some information about the location of “index.dat”
but Windows hide “index.dat” by force so explorer can never find “index.dat”.

In the Table 3 and 4, underbar (“__”) indicates dates, so we know Windows have
been backed up periodically. And the folder typed “<USER>” indicates the name of
Windows user account.

Table 3. Locations in Windows 95+, NT+, Me

C:\Windows\Cookies\
C:\Windows\History\
C:\Windows\History\MSHist____________\ (__ is some variable)
C:\Windows\History\History.IE5\
C:\Windows\History\History.IE5\MSHist__________\
C:\Windows\Temporary Internet Files\ (Explorer 4.x)
C:\Windows\Temporary Internet Files\Content.IE5\
C:\Windows\UserData\
C:\Windows\Profiles\<USER>\Cookies\
C:\Windows\Profiles\< USER>\History\
C:\Windows\Profiles\< USER>\History\MSHist_______\
C:\Windows\Profiles\< USER>\History\History.IE5\
C:\Windows\Profiles\< USER>\History\History.IE5\MSHist________\
C:\Windows\Profiles\< USER>\Temporary Internet Files\ (Explorer 4.x)
C:\Windows\Profiles\< USER>\Temporary Internet Files\Content.IE5\
C:\Windows\Profiles\< USER>\UserData\

 Designing Security Auditing Protocol with Web Browsers 369

Table 4. Locations in Windows 2000+, XP

C:\Documents and Settings\<USER>\Cookies\
C:\Documents and Settings\< USER >\Local Settings\History\History.IE5\
C:\Documents and Settings\< USER >\Local Settings\History \History.IE5\MSHist______\
C:\Documents and Settings\< USER >\Local Settings\Temporary Internet

Files\Content.IE5\
C:\Documents and Settings\< USER >\UserData\

Table 5. URL information of “Index.dat”

Header Information

HTTP Visited Web site

FTP Accessed ftp folder

FILE Used file

TELNET Accessed Telnet

MAIL TO Sent e-mail by outlook

MS INST Installed program by MS install shield

Table 6. Location of Firefox cache files

C:\Documents and Settings\<USER>\Application Data\Mozilla\Firefox\Profiles______\Cache
(___ is some variable)

2.1.4 Comprehensive Information of “Index.dat”
We know that “index.dat” include URLs of accessed data, MAC(Modified, Accessed,
Created) times, and locations of URLs caches. The information about URL can be
represented as Table 5, and we proceed to audit with these information.

2.2 Log Files of Firefox

Now, we deal with log files of Mozilla Firefox that is other popular internet web
browser besides MS Internet Explorer. The Firefox stores cache folder with log files
by the forms of cache file. Now we call this log files cache files.

The Firefox cache files on our system are located on the following path as de-
scribed in the Table 6.

In the cache folders of Firefox, there are three types of caches files as Cache Map
file, Cache Block files, and Cache Data files.

First, the Cache Map file is named “_CACHE_MAP” and is the main file used to
reconstruct Firefox’s cached internet accessed data. The Cache Map file has the 8,192
records mapping information to the cached data and contains hashed number, data
locations, metadata locations fields.

Firefox either saves the information inside a Block file or creates a Data files. The
hashed number is used to name the separate file if that is how a specific cache in-
stance was saved. The other two fields used to reconstruct the cache data are the are
the data locations and metadata locations. Each instance of cache data has metadata
information and cache contents. But, Cache Map file don’t have any information of
accessed sites. Thus, we don’t care about this file for security auditing.

370 H.J. Lee and J.H. Song

Second, the Cache Block files named “CACHE_00X_”, where ‘X’ is a number from
1 to 3. Cache block files contain cache content and metadata information for each in-
stance of cache activity. It can be identified using the method presented as follows.

1) Start block : “bitwise AND” the metadata location/data location with 0x00FFFFFF.
2) Number of data block : “bitwise AND” the metadata location/data location with

0x03000000 and right shifting the result 24 bits. (the data blocks mean contigu-
ous blocks comprising the cache metadata/data.)

3) Size of data block : Left shifting the number 256 by the following number of
bits(Subtract one from the cache block file number and then multiply the result
by two. Therefore, X=1 256 bytes, X=2 512 bytes, X=3 1,024 bytes).

Finally, if the cache content of metadata is too large to be embedded in the Cache
Block files, then the information is saved into a Cache Data files. The file names are
identified by the following format.

<Hashed Number> <Type> <Generation number>

The hashed number is available from the Cache Map file. The “Type” is either ‘d’, for
cache content, or ‘m’, for cache metadata. The “Generation number” is an integer that
identified by “bitwise AND” the metadata location and data location with 0x000000FF.

Both of Cache Block file and Cache Data file have cached data files which are hy-
per text, picture, script, and so on.

3 Security Auditing with “Index.dat”

In this section, we assume that there is only one user account in windows and the user
uses MS Internet Explorer to access internet. In the case of using Mozilla Firefox, we
suggest an optional protocol in section 6. The security auditing of personal computer
is represented by the following process, and it records necessary information in “Pa-
rameters” in each step.

3.1 Simple Flowchart of Security Auditing

We suggest a security auditing protocol as described in the flowchart in Fig. 2. The
security auditors can gain result of auditing, which is described in the below through
the protocol.

1) Document files.
2) Destination of document files to be transferred.
3) Time of document files to be transferred.
4) Way of document files to be transferred.

3.2 Detailed Protocol of Security Auditing

First of all, we must fully compose domain database of websites which support web-
mail. We select addresses obtained by connecting the webmail accounts for domain
database which has the following URLs.

• www.hotmail.com (www.hotmail.com)
• mail.naver.com (naver.com)
• kr.f901.mail.yahoo.com (www.yahoo.co.kr) and so forth

 Designing Security Auditing Protocol with Web Browsers 371

Fig. 2. Flowchart of security auditing protocol

In the following stages from 1) to 10), “Parameter” is representing a storage for data,
and “Value” is representing data in “Parameter”. Above information of webmail ad-
dress is represented parameter as MAIL_Domain.

1) Store parameter VER with the current operating Windows version.

Parameter : VER
Value : Windows 95+

Windows 2000+
Windows XP

2) Find all “index.dat” in a case of parameter VER of 1) within “index.dat” courses of
Table 3 or 4, and store in following parameters with all contents of “index.dat”.

Parameter : HistoryIndex, TemporaryIndex, CookieIndex
Value : Store each parameters with contents of “index.dat”

372 H.J. Lee and J.H. Song

3) By referring to the parameter HistoryIndex of 2), construct each of the following
parameters of http, ftp, telnet, file, and mail. Each parameter contains URLs and
their MAC times.

Parameter : HistoryIndex.HTTP
HistoryIndex.FTP
HistoryIndex.TELNET
HistoryIndex.FILE
HistoryIndex.MAILTO

Value : URL information in the case of header, MAC times

4) By referring to the parameter TemporaryIndex of 2), construct the following pa-
rameter of http URLs and MAC times.

Parameter : TemporaryIndex.HTTP
Value : URLs and MAC times in the parameter TemporaryIndex

5) By referring to the parameter CookieIndex of 2), construct the following parameter
of http URLs and MAC times.

Parameter : CookieIndex.HTTP
Value : URLs and MAC times in the parameter TemporaryIndex

6) Collect information of document files stored in the hard disk. After gathering file
names and MAC times, compare them with HistoryIndex.FILE of 3). And if their
extensions agree with each other, store file names and MAC times with the follow-
ing parameters. Just storing is ordered by last file access time. If there are docu-
ment file names in HistoryIndex.FILE but not in the hard disk, we would have
nothing to do with this problem. In the section 5, we will explain the security audit-
ing in this case.

Documents: MS Word, PowerPoint, Excel, Text, PDF and etc.
Extensions: doc, ppt, xls, txt, pdf and etc.
Parameter : WHOLE_Doc
Value : file names, last file access times

7) Compare HistoryIndex.HTTP of 3), TemporaryIndex.HTTP of 4) and CookieIn-
dex.HTTP of 5) with the above MAIL_Domain. And if their URLs agree with each
other, store URLs and MAC times with the following parameter.

Parameter : MAIL_Access
Value : URLs and MAC times

After all, additionally updates the parameter MAIL_Access with collecting “send
mail information” by MS outlook in the HistoryIndex.MAILTO.

8) Construct following parameter WHOLE_Access with HistoryIndex.FTP, History-
Index.TELNET of 3) and MAIL_Access by referring and concatenating. After all,
there are all URLs information and MAC times supposed to transfer files in target
computer of being audited. Just storing is ordered by URL access time.

Parameter : WHOLE_Access
Value : URLs and MAC times for each parameters

 Designing Security Auditing Protocol with Web Browsers 373

9) In the following procedure a) through c), make out final report by comparing pa-
rameter WHOLE_Access of 8) with WHOLE_Doc of 6). Store the following pa-
rameter REPORT with final report.
Parameter : REPORT

a) Verify one URL information in the WHOLE_Access.
b) Compare access time of URL in a) with last access time of WHOLE_Doc,

and select file name in the case of "within access time ± 120 seconds". After
this, store file name of WHOLE_Doc for URL in WHOLE_Access and or-
dered by access time.

c) Perform a) and b) for all URLs in WHOLE_Access.

Additionally, above “120 seconds” is predicted by the elapsed time from accessed
webmail account to browse files, and by the average elapsed time to send file with
FTP, TELNET. It is calculated by measuring the average time from saving docu-
ment to sending it by e-mail.

10) There are URLs information of being suspected to transfer some document files
and file information of being suspected to be transferred to URLs in the parame-
ter REPORT. And it is ordered by access time. Thus we proceed to audit for ille-
gal outflow of important document.

The above protocol efficient by using specified file name in 6). For example, if secu-
rity auditing is proceeded with specified word “a plan of operations”, “confidence”,
or “Secret”.

4 Extensions of Security Audit

More information are required for gaining high accuracy through the security auditing
in the section 5. Consider the following four cases for more accurate security auditing.

• In the case of backed up “Index.dat”
• In the case of undeleted “Index.dat”
• In the case of recovered “Index.dat” in the case of being undeleted imperfect
• In the case of using Mozilla Firefox web browser

4.1 Use of Backed Up “Index.dat”

As we described “Location of “Index.dat”” in the section 2.1.3, “index.dat” is periodically
backed up in “MSHist<backup date>” folder. In addition to currently used “index.dat”, we
proceed to audit for past period with using backed up “Index.dat”. It means that the backed
up “index.dat” can be replaced by section 3 “Security Auditing with “Index.dat””.

4.2 Use of Deleted “Index.dat”

Notice that, it is difficult to undelete the removed “index.dat”, because it looks like a
folder with being deleted after backup period. After undeleting “index.dat”, we pro-
ceed to audit in section 3.

374 H.J. Lee and J.H. Song

4.3 Use of Damaged “Index.dat”

In the case that “index.dat” is partly damaged through undeleting, we recover “in-
dex.dat” with Windows inline completion ability in the Windows registry. Windows
supports automatic correction ability by used URLs when user types wrong URLs.
The URLs of inline completion ability recorded in following Windows registry or-
dered by accessed time.

HKEY_CURRENT_USER\Software\Microsoft\InternetExplorer\TypedURLs

First, we store the following parameter with URLs in the above registry to recover
damaged “index.dat”.

Parameter : REGISTRY_URL
Value : URLs information(except first and last stage domain)

And we compare “Value” of REGISTRY_URL with damaged “index.dat” by the
following steps from 1) to 2).

1) We create “Templates” for one URL in the parameter REGISTRY_URL. In this
way, “Templates” means much similar information are generated through one URL
information. For Example,

URL : hotmail
Templates : hotmai_, hotma_l, ~ , __tmail, h__mail and so forth.

If the sequence of “Templates” has blanks(“_”) too much, the performance would
be remarkably fallen down.

2) In the case that the one of created “Templates” in 1) is equal to URLs information
of damaged “index.dat”, the corresponded imperfect URL can be recovered to se-
lected URL in 1) which selected for creating “Templates”.

3) For all about URLs in parameter REGISTRY_URL, we proceed steps 1) and 2).
4) At the end of 3), the security audit protocol in section 3 is proceeded.

4.4 Use of Deleted Document Files

In the case that document files exist in the parameter HistoryIndex.FILE but not in the
hard disk, we proceed to audit with undeleting these files. Undeletable document files
are used in the protocol 6) in the section 3.2 with being undeleted.

In general, the deleted files on Windows are not perfectly removed but lost their
links from file header. Thus, it can be undeleted by recovering of damaged link.
Methods of recovering of deleted files will be omitted in this paper, because there are
already many methods and tools for recovering of deleted files[10]. The possibilities
of recovering of deleted files by using MS-DOS “undelete.exe” are described in the
following Table 7, by our experiments.

The MS-DOS “undelete.exe” supports almost the minimum recovery ability of
known undelete techniques. There are lots of undelete methods besides it. Thus even
if any kinds of undelete methods are used in the Section 3, it will offer better results
than MS-DOS “undelete.exe”.

 Designing Security Auditing Protocol with Web Browsers 375

Table 7. Possibility of recovery for deleted files by using MS-DOS “undelete.exe”

Deleted before Probable possibility of recovery

1 day 99 %

5 days 95 %

7 days 90 %

10 days 80 %

30 days 40 %

60 days Under 10 %

4.5 Use of Firefox Cache Files

As the analysis of Firefox cache files in the section 2.2, abilities of Firefox cache file
are almost same to “index.dat” logs. Because Cache Map file contains only mapping
to the other cache files, just we consider information of Cache Block files and Cache
Data files. The cache files can be categorized by the domain names from which they
were retrieved by the method of section 2.2. After categorizing the cache files, we
define the parameter Firefox.HTTP and store it with URLs and MAC times. And
then, we apply additionally the parameter Firefox.HTTP to stage 7) of security audit-
ing protocol in the section 3.2.

4.6 Forgery and Alteration of “Index.dat”

Recently, there are no ways to indicate alteration and forgery of “index.dat”. Thus it is
hard to use the result of our protocol as legal fact, because our protocol does not guar-
antee the integrity and indication of alteration and forgery of “index.dat”. But it is
fitted to use the result of our protocol as adminicle and reference to examination of a
suspected person.

5 Conclusions

In this paper, we analyze the MS Explorer log “index.dat” and Mozilla Firefox cache
files. The “index.dat” gives us the information about most of URLs accessed by ex-
plorer of Windows on personal computer and suggests a security auditing protocol
with using “index.dat”. And, the most popular web browser except MS Explorer,
Firefox has cache files like “index.dat”. The principal purpose of security auditing
protocol we have suggested, gathers access information about URLs and document
file information from “index.dat”. Since auditor does not directly access document
files, and proceed to security audit with high performance. Moreover, with the proto-
col 5) and 9) in section 3.2, we can find the suspected document to be flow out. As a
result of analysis of “index.dat”, we find out that there are use, modify, copy, distrib-
ute, transfer, publicly display, sublicense, so it is important to protect log “index.dat”
from cracking or hacking. If the logs are deleted from personal computer, auditor can
proceed to audit with the method in the section 4.3, “Use of Damaged “Index.dat””.
In this case, some errors can be occurred in recovering and the confidence level

376 H.J. Lee and J.H. Song

Table 8. Confidence of security auditing

Illegal outflow The rate of confidence

1 day ago 90 %

5 days ago 85 %

7 days ago 81 %

10 days ago 72 %

30 days ago 36 %

60 days ago Under 5 %

becomes lower, so perfect recovering method for “index.dat” is needed to reduce
errors and increases in confidence of security audit.

The future works are improvement of section 4.3, “Use of Damaged “index.dat””
and section 4.5 “Use of Firefox Cache Files”, and development of software on our
protocol.

Finally, we calculate the rate of confidence of security auditing for MS Explorer
logs. This for Firefox is not tested, and it remains to be future work. Not all URLs are
recorded in “index.dat” and the confidence after recovering damaged “index.dat” is
not guaranteed. The “index.dat” has 90% of all URLs information and be backed up
every week for 8 weeks. Also The probability of recovering the deleted “index.dat”
within 4 weeks after being deleted is under 50%. The rate of confidence of security
audit for illegal outflow occurred in about 2 months is shown in Table 8, and the
probability can be calculated with the probabilities of recovering in the section 3 and
above. Since errors can be occurred in comparing with access time to webmail and
FTP accounts and access time to document files, accidental errors of the protocol 9) in
section 3.2 is not considered.

References

[1] http://www.investorwords.com/2747/leakage.html
[2] http://www.moleg.go.kr/. Korea Ministry of Government Legislation.
[3] FBI/CSI 2004 Computer Crime and Security Survey, FBI/CSI, http://www.gocsi.com

(2004)
[4] Warren G. Kruse II, Jay G. Heiser : Computer Forensics incident Response Essentials. Ad-

dison Wiley(2001)
[5] Eoghan Casey : Handbook of Computer Crime Investigation. Academic Press(2001)
[6] Shon Harris : CISSP Certification. McGraw-Hill (2001)
[7] Solomon, David A. Russinovich, Mark : Inside Microsoft Windows 2000. Microsoft

Press(2000)
[8] Microsoft : http://msdn.microsoft.com. Microsoft Development Network

Author Index

Anckaert, Bertrand 194

Byun, Jin Wook 318

Chae, Song-hwa 354
Chang, Wei-Chi 218
Cheng, Bo-Chao 218
Chida, Koji 328
Choi, Jun Yong 179
Chung, Kyoil 271

De Bosschere, Koen 194
De Sutter, Bjorn 194
Debray, Saumya 194

Guo, Fei 138

Hong, Dowon 271
Hong, Kihun 96
Huang, Ching-Fu 218

Izu, Tetsuya 232

Jeong, Kyeong Ja 38
Juang, Wen-Shenq 81
Jung, Souhwan 96

Kang, Bo Gyeong 10
Kang, Hyunho 150
Kanlayasiri, Urupoj 54
Kikuchi, Hiroaki 165
Kim, Byung Ki 179
Kim, Dong-kyoo 354
Kim, Dong Kyue 207
Kim, Howon 207
Kim, Keon Tae 207
Kim, Seungjoo 1
Kim, Wonil 354
Kim, Young Dae 179
Kobayashi, Kingo 150
Korkishko, Tymur 243
Kunihiro, Noboru 232
Kurkoski, Brian 150

Lee, Dong Hoon 318
Lee, Ho Jung 364
Lee, Hyejoo 150
Lee, Minsoo 126
Lee, Mun-Kyu 207, 271
Lee, Pil Joong 283
Lee, Sang Jun 179
Li, Deyi 138
Lim, Chae Hoon 243
Lim, Jongin 318

Madou, Matias 194
Moseley, Patrick 194
Mukhopadhyay, Sourav 25

Nam, Junghyun 1
Nascimento, Anderson C.A. 328

Oh, Sejong 343
Ohta, Kazuo 232
Okada, Mitsuo 165
Ontua, Marife G. 68
Oswald, Elisabeth 292

Pancho-Festin, Susan 68
Park, Dong Jin 283
Park, Je Hong 10
Park, Sangwoo 10
Park, Sehyun 126
Park, Tae-Jun 271
Park, Youngran 150

Rhee, Hyun Sook 318

Sanguanpong, Surasak 54
Sarkar, Palash 25
Schramm, Kai 292
Seo, Seong Chae 179
Shimoyama, Takeshi 232
Shin, Jong Hoon 283
Shin, Moon Sun 38
Shin, Sanguk 150
Song, Jung Hwan 364

378 Author Index

Song, Ohyoung 126
Suzuki, Koutarou 306, 328

Takashima, Katsuyuki 259
Tartary, Christophe 108

Uchiyama, Shigenori 328

Wang, Huaxiong 108
Wang, Jianmin 138
Won, Dongho 1

Wu, Cheng-Shong 218
Wu, S. Felix 96

Yamaguchi, Kazuhiko 150
Yamamoto, Go 328
Ye, Xiaojun 138
Yokoo, Makoto 306
You, Jin Ho 179

Zhang, Zhihao 138

	Frontmatter
	Security Analysis and Attacks
	Security Weakness in Ren et al.'s Group Key Agreement Scheme Built on Secure Two-Party Protocols
	Cryptanalysis of Some Group-Oriented Proxy Signature Schemes
	Application of LFSRs in Time/Memory Trade-Off Cryptanalysis

	System Security
	An Alert Data Mining Framework for Network-Based Intrusion Detection System
	Key Factors Influencing Worm Infection in Enterprise Networks
	Evaluation of the Unified Modeling Language for Security Requirements Analysis

	Network Security
	A Simple and Efficient Conference Scheme for Mobile Communications
	A Hash-Chain Based Authentication Scheme for Fast Handover in Wireless Network
	Efficient Multicast Stream Authentication for the Fully Adversarial Network Model
	Elastic Security QoS Provisioning for Telematics Applications

	DRM/Software Security
	An Improved Algorithm to Watermark Numeric Relational Data
	Video Fingerprinting System Using Wavelet and Error Correcting Code
	Secure Asymmetric Watermark Detection Without Secret of Modified Pixels
	Kimchi: A Binary Rewriting Defense Against Format String Attacks
	Software Protection Through Dynamic Code Mutation

	Efficient HW Implementation
	Efficient Hardware Implementation of Elliptic Curve Cryptography over {\itshape GF}({\itshape p}<Superscript>{\itshape m}</Superscript>)
	Developing and Implementing IHPM on IXP 425 Network Processor Platforms
	Analysis on the Clockwise Transposition Routing for Dedicated Factoring Devices
	mCrypton -- A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors

	Side-Channel Attacks
	Practical Modifications of Leadbitter et al.'s Repeated-Bits Side-Channel Analysis on (EC)DSA
	A DPA Countermeasure by Randomized Frobenius Decomposition
	DPA Attack on the Improved Ha-Moon Algorithm
	An Efficient Masking Scheme for AES Software Implementations

	Privacy/Anonymity
	Secure Multi-attribute Procurement Auction
	Oblivious Conjunctive Keyword Search
	Efficient, Non-optimistic Secure Circuit Evaluation Based on the ElGamal Encryption

	Efficient Implementation
	New Concept of Authority Range for Flexible Management of Role Hierarchy
	Role-Based Access Control Model for Ubiquitous Computing Environment
	Designing Security Auditing Protocol with Web Browsers

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

